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In 1897 (except that some say 1907) the Italian economist and polymath Vilfredo
Pareto observed that 80% of the land in England (some say that he said Italy) was owned
by 20% of the people—and that imbalances of this nature (some say these particular
proportions) embody a kind of universality.

Clearer in the historical record is the role played by management consultant Joseph
M. Juran, who as early as 1941 and continuing through the 1950s popularized (or
invented) the idea of a universal 80/20 “Pareto principle.”[1, 2]. It is hard to find
any modern reference to the principle that does not run back through Juran. From
so obscure a seed, the 80/20 principle has blossomed into a a verdant cultural meme,
invoked everywhere:

80% of the work accomplished in a typical office is done by 20% of the people.
80% of a company’s sales come from 20% of its products.

80% of healthcare resources are expended on 20% of the patients.

80% of your success will come from the best 20% of your ideas.

Are these all true? Who knows! The Pareto principle has spawned multiple self-help
books [3, 4, 5. And more: New York City debt-collection defense attorney Jesse Lan-
gel (“We Defend Against Debt Lawsuits, Bank Restraints, and Wage Garnishments”)
highlights 100 examples of the principle on the firm’s web site [6]. One puzzler there is

e 830% of people marry within 20% of the local population,
seemingly implying that each individual in the desirable 20% has four spouses.

Evidently not all invocations of the principle can be fact. Many seem not even
“truthy”, much less true. Still, we all observe situations in which some people work
four times as hard as others, or are four times needier. So perhaps we should not dismiss
the principle completely.

But, is it four?

Where did “four times” come from? Well, 80 is four times 20, but let’s look more closely.
Suppose an office has a total productivity of 1 (in some units), and is populated by



a fraction f of ambitious workers with productivity pien and a fraction 1 — f of lazy
workers with productivity ... We can write,

thigh—i_(l_f)q;low:]-
[ Zhigh = (1 — f)
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Thigh = Tf, Tlow = % (2)
Substituting f = 0.2 (i.e., 20%), we get Tyign = 4 (there’s our “four”), but o, = 1/4.
In other words the hard workers have to work 16 times as hard as the slackers. If the
hard workers are putting in an eight-hour day, then the rest of us are doing about half
an hour of work spread throughout the day and spending the rest of our time on, I
guess, our social media. Or polishing our résumés. I'm sure there are some offices like

this, but it seems doubtful that this is the typical case.

(1)

whose solution is

The discrete charm of the false-unity rule

If exactly 20% of people are something, then it stands to reason that the remaining
exactly 80% are something else, because 0.8 + 0.2 must add to 1.0. Not so fast! In the
80/20 rule, the “20%” refers to people or “input”, while the “80%” refers to production
or “output”. There is no mathematical reason that the numbers must add to one. It
could be that 20% of the people produce 63.24% of the production, so that the remaining
80% (of people) produce the remaining 36.76% (of output). What must add to one is
people-and-people or production-and-production, but not people-and-production. In
this particular case we would have an 63.24/20 rule, not likely to have gone viral as a
meme.

It is a matter of charm, not mathematics, that the 80/20 rule seems to add up to
one. A 90/10 rule would be equally charming—if there were any reason for it to be true.
We will call these “false-unity rules”. Below, we answer the question of whether, in any
particular case, some false-unity rule always exists and, if so, is it always something
close to 80/20. (No spoilers here.)

Distribution functions of productivity

Instead of just two values of productivity x, it is more natural to take a distribution of
values p(x), the probability density of workers’ productivity and thus normalized,
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We might just as easily have taken the lower limit to be —oo, to include workers whose
presence subtracts from overall productivity. We all know people like that. But, as a
courtesy, we’'ll assume that none such exist. (Or they have been fired.)

For convenience, we can normalize the total productivity to 1 (as was done in
equation 1), expressed as,

/Oooxp(x)dle (4)
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Figure 1: Examples of some standard distributions over the positive real line with means
equal to 1.

This can also be interpreted as fixing the mean of the distribution to 1, meaning that
any investigation of the 80/20 principle is an investigation of unit-mean distributions.

The distribution p(x) might have any form, but we consider first some standard,
“named” distributions over the positive real numbers: Pareto, LogNormal, and Gamma.
Figure 1 shows one example of each type—not necessarily, as we will see, an example
that satisfies the 80/20 rule.

Pareto

The eponymous Pareto has his own distribution [7], often referred to simply as a power-
law or power-law-tail distribution:
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with 2o > 0 and (for our purposes) a > 1. Here « is a shape parameter, while zo adjusts
the scale of . The requirement of unit mean imposes a particular scale parameter value,
a—1

To = a (6)

yielding a one-parameter family of distributions with parameter a.



LogNormal

This distribution is Normal in the variable log(x). In the variable x it is

po) = e (—% el >]> )

As above, the unit-mean condition imposes a particular scale, now,

Ty = exp(—0?/2) (8)

leaving o as the free shape parameter.

Gamma

The Gamma distribution can be written as
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(Most references write 3 for our o, but some confusingly write 1/ for our g, so we
will stick with zj.) The equation describes a distribution that grows as a power of x

and then decays as a negative exponential.

The unit-mean condition is simply

Ty = 1/04 (10)

ROC curves

Suppose we write C'(x) for the fraction of people (or inputs) with productivity > =z,
and E(x) for the fraction of total productivity that they produce. (The mnemonics are
C for “cause” and E for “effect”, with upper-case letters because these are cumulative
distribution functions.) Then, with reference to the normalization equations (3) and
(4), we have

Cla) = / " () da
Blz) = / () d!

Equation (11) can be viewed as a parametric form for the function E(C'), that is, what
fraction of output (effect) E is produced by the most productive fraction of input (cause)
C. A plot of this is conventionally termed a ROC (receiver operating characteristic)
curve, named for a quite different use of the same idea in World War II [8].

(11)

Figure 2 shows the ROC curves thus obtained for members of the Pareto (power-law)
distribution family (a range of values of a) and members of the LogNormal distribution
family (a range of values of o). The figure for the Gamma distribution family (not
shown) is qualitatively similar.
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Figure 2: ROC curves for (top) Pareto distributions with different values of the tail exponent
a, and (bottom) for LogNormal distributions with different values of the width parameter o.
See text for how the values of a and ¢ have been chosen.



Some general observations can be made:

1, The curves are monotonic, as follows from the non-negativity of the integrands
in equation (11).

2. Since all the curves start at (0,0) and end at (1,1), and are monotonic and
continuous, they must cross the upper-left-to-lower-right (that is, (0,1) to (1,0) line
exactly once. That point is the distribution’s unique false-unity rule, where some par-
ticular fraction f input produces a fraction 1 — f of the output. But f is not necessarily
20% or any other universal value.

3. The ROC curves are always concave downward, as seen by (from equation 11),
PE _d (4B [dC _ d (dBjdr\ [dC
dC?  dx \ dC dr — dr \ dC/dx dx
d —xp(x)) 1
— (=) p(a)] = ——— <0
7 () [l = <

4. The 50/50 rule ROC curve (not shown in the figures) is a straight line connecting
(0,0) and (1, 1), because that is the only (edge-case) concave-downward curve that also
passes through (0.5,0.5). And, this is possible only in the limiting case where all workers
have identical productivity.

(12)

5. No distribution ever has f < 0.5 in its unique false-unity rule, by a similar
convexity argument. (If the best 60% people can do only 40% of the work, then the
remaining lazy 40% fraction of people can’t possibly do 60% of the work.)

The magical shape parameters to give 80/20

The magic in Figure 2 lies in choosing the specific values of the shape parameters «
(top figure) or o (bottom figure) that give memorable false-unity rules: 90/10, 80/20,
70/30, and 60/40; rather than something like 73.24/26.76. For any p(x;«), where «
is a shape parameter, one can proceed by nested numerical root finding: An inner
function, given «, finds = such that E(z) = 1 — C(x) (equation 11) and returns the
value FE(z). (Observation 2. above shows that there is always exactly one solution.) An
outer function finds « to give the desired rule E(z) = f = 0.2 (say). For the case of the
Gamma distribution, equation (9), we do exactly this. The value a = 0.244829 there
yields the 80/20 rule.

Of no fundamental importance, but fun, the Pareto and LogNormal distributions
yield analytic solutions. It is convenient in both cases to let the scale parameter xg
“float”, because the answer will depend only on shape, not scale. We then have two
simultaneous equations,

Cl)=f  E@=1-f (13)
to solve for the two unknowns, shape parameter and x. In the case of Pareto, equations

(13) are )
B =r (@ o

T i



5 T T T T T

| — Pareto |
4—W — LogNormal ]
= Gamma 1
a 1
>
g 3 -
@ |
(0] 4
©
2 |
5 2f :
s |
e 4
o i
1| i
0 L I | I I | | r ' T . L n ]
0.0 0.5 1.0 1.5 2.0 2.5 3.0

productivity x

Figure 3: Same families of distributions as was shown in Figure 1, but now setting their
shape parameters to have 80/20 rules. The tails extend far to the right of the figure. (The
distributions shown have means equal to 1.)

whose solution is easily found to be

o log(f)
log(f) —log(1 - f)

The result © = (1 — f)xo/f is also found, but is not needed for anything. The 80/20
rule for the Pareto distribution thus has exponent a = log5/log4 = 1.16096.

(15)

For LogNormal, with some help from Wolfram Mathematica [9], we find the equa-

tions,
1 log 1 logx — 02>
—erfc = 1, —erfc | ———— ) =1— 16
2 <\/§0) d 2 ( V20 f (16)

where erfc is the complementary error function. The solution is, rather amazingly,

o =2v2erf (1 - 2f) (17)
where erf™! is the inverse error function. The 80/20 rule for the LogNormal distribution

then has shape parameter o = 1.68324.

All 80/20 distributions are very long-tailed

Figure 1 showed textbook-typical Pareto, LogNormal, and Gamma distributions. Fig-
ure 3 now shows the unique members of those families that yield 80/20 rules. They
are nothing like typical! Indeed, the figure can hardly do them justice: The functions
shown all have mean 1, but by eye, the preponderance of their weight seems to be at
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values smaller than 1. The explanation, of course, is that their tails extend far to the
right and decay only slowly.

We can prove this as a general property of any distribution p(z) with an 80/20 rule.
In fact, we already almost did prove this in equations (1) and (2). The revised argument
is this: We are given an arbitrary p(z), scaled and normalized to satisfy equations (3)
and (4). For a fixed f, define x,, as the productivity value such that

/oop(x) dr=f 0<f<05 (18)

Let (xy;) be the average productivity z of all workers with productivity z > x,,, that

| (o) = | °° wp(e) d / / jpm i~ [ °° ep(e)dr /1 (19)

Similarly (z),) is the average of workers with = < x,,,

o) = [ antorde /00— p (20)

The equation
f{on) + (L= f) (2o) =1 (21)
is immediately seen to be the normalization equation (4). Since f (xy;) is the total

productivity > z,,, (that is, fraction of workers times their average productivity), the
condition for a false-unity rule is

f <xhi> =1- f (22)

equations (21) and (22) are exactly the same as equation (1), but with mean quantities
now replacing assumed point values. The solution for the means is thus the analog of

equation (2), ; ;
1—

(Tni) = T, (T10) = ﬁ (23)
Substituting f = 0.2 to get an 80/20 rule, we see that that for any functional form
of p(x), the average productivity of the top 20% is exactly 16 times the average pro-
ductivity of the bottom 80%. It follows that, for smooth-tailed distributions (i.e., not
magically massed around this unique multiple 16), a significant fraction of the over-
achieving 20% must lie at ~ 20 or ~ 30 times the mean of the other 80%. Such
hyper-skewed distributions are a fact of life in some realms, such as income inequality
[10] or healthcare costs [11]. Tt seems unlikely that they are typical of worker produc-
tivity in the average office. The reader can now judge the plausibility of other claimed
80/20 applications case by case. What about this one:

e 80% of true 80/20 assertions come from 20% of the websites making them.
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