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1 Introduction

Wright-Fisher models [1] are idealized models for genetic drift, the process by which the the popu-
lation frequency of an allele varies with time stochastically, and, in particular, may disappear from
the population entirely, or may fix in 100% of the population. Wright-Fisher models can be applied
to the dynamics of neutral (or nearly neutral) mutations – the vastly dominating case, as empha-
sized by Kimura [2] – or to the case of alleles that have a fitness advantage or disadvantage, as
parameterized by a selection coefficient s.

Wright-Fisher models make three idealized assumptions: [3] (1) Generations are taken to be
discrete, so that the population evolves by a discrete-step Markov process. (2) The population
size is taken to be fixed, so that alleles compete only against other alleles and not against an
external environment. (3) Random mating is assumed. None of these assumptions hold in any real
population. Nevertheless, Wright-Fisher has proved to be a useful intuitive guide in real cases, and
also a foundation on which more complicated population models can build. [4]

2 A Specific Wright-Fisher Model

There are many closely-related formulations of Wright-Fisher models. The one used here is as
follows.

We consider a population of N diploid individuals, so that there are at most 2N copies of
an allele in the population. N of course actually means Ne the effective population size [5, 3], a
distinction that is relevant only when considering what happens when the idealizations fail (beyond
our discussion here). One generation in a stable total population size produces N offspring.

Let us focus on some allele x that occurs n times (out of 2N). We can define the allele’s
probability of occurrence by

p ≡
n

2N
(1)

That is, the number of x alleles is parameterized as 2Np.
The offspring of a random mating carries 0, 1, or 2 copies of the allele x with probabilities

P (0) = (1 − p)2

P (1) = 2p(1 − p)

P (2) = p2

(2)

which of course sum to 1 for any p.
But let us introduce the possibility that an x allele carries a selective advantage or disadvantage.

The definition of an allele’s selection coefficient s used here is that an individual with one copy of the
allele (heterozygous) should produce a factor (1 + s) more offspring per mating than an individual
lacking the allele. Here s may be positive or negative. The value s = −1 represents an immediately
lethal mutation.
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The model must also parameterize in some way the case of an individual carrying two copies of the
x allele (homozygous). In principle this is a second parameter, independent of s. The homozygous
individual could in principal produce many more, or many fewer, than a factor (1 + s) offspring.
However, for mathematical simplicity, most Wright-Fisher models collapse the two parameters by
assuming that the homozygous x individual produces (1 + s)2 more offspring. For small s this
is approximately twice the advantage (in excess offspring) as the heterozygous x individual, since
(1 + s)2 ≈ 1 + 2s.

When a favorable mutation is destined to fix in the population, the heterozygous case will be
typical early on, while p is small; but the homozygous case will be typical later, when p approaches
1. So, we can view the error introduced by our collapsing to a single s as being roughly equivalent
to ignoring a (presumed weak) functional dependence of s on p.

Now, equation (2) is replaced by an equation with the fitness bias,

P (0) ∝ (1 − p)2

P (1) ∝ 2p(1 − p)(1 + s)

P (2) ∝ p2(1 + s)2
(3)

The right hand sides sum to (1 + ps)2, so to convert the proportion signs to equalities, we must
normalize and divide the above equation by this factor.

It is a straightforward exercise to compute the mean and variance of the normalized distribution
(3),

mean = 2p
1 + s

1 + ps

var = 2p(1 − p)
1 + s

(1 + ps)2

(4)

So, when s is positive, an individual’s mean number of x alleles goes, in one generation of random
mating, from 2p to something larger than this by a factor (1 + s)/(1 + ps). (And correspondingly,
the number of alleles decreases when s is negative.)

3 Formulation as a Binomial Markov Process

For the population as a whole, one generation of mating (N offspring) is a random process that
alters n, the total number of x-alleles. From equation (4), and the additivity of mean and variance
for (independent) random matings,

〈n〉 = N × mean = 2Np
1 + s

1 + ps

Var(n) = N × var = 2Np(1 − p)
1 + s

(1 + ps)2

(5)

If we momentarily set s = 0 in equation (5), the case for a neutral mutation, we immediately see
that nt+1 in generation number t + 1 is generated by a binomial process whose parameters depend
on N and on nt of the previous generation. That is,

nt+1 ∼ Binomial(2N, p) = Binomial
(

2N,
nt

2N

)

(6)

where ∼ here means “is drawn from”. In other words, we have a Markov process, where (for constant
N), each nt+1 depends only on the immediately preceding nt.

To understand the case s 6= 0, define

q ≡
p(1 + s)

1 + ps
, so that 1 − q =

1 − p

1 + ps
(7)
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Note that as p varies from 0 to 1, q also varies from 0 to 1, for any value of s. Now we can recognize
that equation (5) is a binomial process even in the general case of nonzero s, namely

nt+1 ∼ Binomial(2N, qt) (8)

where qt relates back to nt through equations (7) and (1).
There are two different ways that one can use equation (8) in numerical modeling of the Wright-

Fisher model here discussed. One can use it in Monte Carlo fashion, advancing a single n through
successive generations by drawing from a random binomial generator. Or, one can advance the
entire probability distribution of n one generation at a time, by calculating the matrix elements
of the Markov process implied by (8) and doing the matrix multiplication [6]. In this latter case,
there is no random number generator, and the results are “exact” up to numerical roundoff and
truncation errors. Various approximation schemes, not described here, for dealing with large values
of N and large numbers of generations can also be implemented within a Markov matrix formulation.
Diffusion theory [4] can be captured within such approximations; but a Markov matrix formulation
can be arbitrarily more exact than diffusion theory, depending on the computational workload that
one can afford.

4 Numerical Approximations to Exact Results

From numerical models like those described above, one can obtain detailed results for models across a
wide range of N and s. It is useful to summarize some of these more-or-less exact results as “fitting
formulas” that capture the asymptotic behavior in various regimes, while maintaining tolerable
accuracy in complicated overlap regions. Note the distinction between obtaining exact analytic
results for approximations of the original model, as in the case of the diffusion approximation [4],
and obtaining approximate fitting formulas to the numerically implemented exact model, as here.
By “tolerable accuracy” we usually mean on the order of 10–20%, although a factor of 2 might be
tolerable in some cases. Some fitting formulas thus obtained here follow.

Probability of Fixation

A mutation is said to fix when it becomes universal in the population, that is, p = 1 and n = 2N .
Our methods don’t improve on the standard approximation,

Pfix ≈
1 − e−2s

1 − e−4Ns
(9)

This formula has several asymptotic cases: When the selection coefficient is positive and O(1),
fixation is highly likely,

Pfix ≈ 1 − e−2s (10)

When s is of either sign but small in relation to the inverse of the population size, |s| ≪ 1/(4N),
then Kimura’s neutral result obtains,

Pfix ≈
1

2N
(11)

which can be understood as the uniform probability that any one of the 2N alleles in the population
will ultimately prevail in a neutral coalescent process.

When s is positive, Ns ≫ 1 but s ≪ 1, the fixation probability increases linearly with s,

Pfix ≈ 2s =
1

2N
(4Ns) (12)

So the fixation probability is larger, relative to the neutral case, by a factor 4Ns.
When s is negative and |s| & 1/(4N), the fixation probability goes exponentially to zero as

Pfix ≈ e−4N |s| (13)
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Mean Time to Fixation

For alleles that do fix, we can ask what is their distribution of times to fixation, measured in
generations. A simpler question is what is the mean of that distribution. A fitting formula that is
tolerably correct in all regimes is

〈tfix〉 ≈
4N

1 + 3

8
N |s|

(

1 + 1

2
(lnN)|s|

1 + |s|

)

(14)

When N |s| ≪ 1 (approximately neutral case), the mean fixation time is about 4N . When Ns ≫ 1
but s ≪ 1 (regime of fixation probability linear in s), equation (14) becomes

〈tfix〉 ≈
32

3|s|
+

16

3
lnN (15)

so fixation is not only more likely, but also occurs more rapidly in proportion to s getting larger.
When selection per generation is strong, |s| & 1, we have

〈tfix〉 ≈
16

3

lnN

|s|
(16)

That is, highly positive mutations take longer to fix in larger populations, albeit only logarithmically.

Mean Time to Loss

If an allele doesn’t eventually fix, then it will eventually be lost from the population. The mean
time to loss, measured in generations, is tolerably fit by

〈tlose〉 ≈ 2 ln

(

N

1 + N |s|

)

+ 2 (17)

which, because of the logarithm, can never be very large.

Relation Between Mutation and Fixation Rates

Let µ be the mutation rate per individual per generation for the particular nucleotide and A,C,G,T
outcome associated with allele x. For the neutral case, a population of N will generate a mean of
2Nµ such mutations per generation, each of which will fix with probability 1/(2N). Thus the mean
number of fixations of x per generation µfix is just µ, identical to the mutation rate at which they
are generated, as Kimura famously pointed out. When this number is small (the usual case) it can
be interpreted as the probability per generation of fixing the allele x.

For the case of nonzero s, the interesting case is when N |s| ≫ 1, so that selection matters. When
s is positive but small, s ≪ 1, we multiply the population rate of mutation 2Nµ by the fixation
probability 2s to get

µfix = 4Ns µ (18)

So the fixation rate in the population is larger than the mutation rate by a factor 4Ns.

5 Smallest Observable Selections on Evolutionary Time Scales

Suppose that, because of an environmental change or an opportunity created by a previous mutation,
a mutation becomes significantly favorable, 4Ns > 1, at generation t = 0. How long does it take,
on average, before it fixes in the population?

The answer is the sum of two terms. First there is the time until a mutation that is destined
to fix appears in the population. Second, there is the time that it spends in the population fixing.
Actually these are not statistically independent, but for illustrative purposes we pretend that they
are.
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The rate at which mutations fix is (2Nµ) × (2s) = 4Nsµ, so the mean waiting time for the first
one after t = 0 is the reciprocal of this. By equation (15) the fixation time is, up to a small additive
logarithm, 32/(3s). So the total is

T =
1

s

(

1

4Nµ
+

32

3

)

(19)

Thus, the number of generations required is at least ∼ 10/s, and can be much larger if we are
“mutation starved” with µN ≪ 1.

An interesting way to look at equation (19) is as putting limits on the smallest mutations that
can be observed on a known evolutionary time scale. In other words, solve equation (19) for s in
terms of µ, N , and T (a number of generations over which we observe significant adaptation by
accumulated mutations). Then smaller values of s don’t have time to happen. That is,

s &
1

T

(

1

4Nµ
+

32

3

)

(20)

Let’s try putting in numbers for vertebrate evolution. Little is actually known about the value
µ, but it is often estimated as 10−8 or 10−9. [7, 8]

As a first example, consider Homo sapiens during the 106 or so years of his evolution, comprising
105 or so generations. Population studies lead to estimates of the effective population N on the
order of 104. [9] So 4Nµ ≪ 1, and we get

s >
1

4NTµ
≈ 10−1 (21)

So, with these values, we see that humans must have evolved by mutations with huge (> 10−1)
individual selection coefficients. Indeed, the uncertainty in even the order of magnitude of the input
quantities allows the possibility of s & 1, which would effectively stop all incremental adaptation by
natural selection, something that we know to be contrary to fact. This is suggestive of a mutation
rate µ that is itself under mutational selection and kept large enough to allow gradual adaptation
via large numbers of small mutations to proceed. If we imagine some necessary maximum value of
s, say smin = 10−2, then we can write equation (19) yet again (for human) as

µ ∼
1

4NTsmin

∼ 10−8 (22)

By contrast, now consider some notional species of fish with N = 1010 and 106 generations of
available time to evolve. Now 4Nµ ≫ 1, so the bound on s is

s >
32

3T
≈ 10−5 (23)

In this case, mutations of exquisitely small effect in terms of s are evolutionarily effective, as Darwin
understood. Thus, humans and (notional) fish appear to evolve in very different regimes of selection
coefficient s, with possibly important effects on the nature of their respective evolutions.
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