
Note on the Signi�ane of 2x2 ContingenyTables and Lindley's ParadoxWilliam H. PressApril 13, 20051 IntrodutionThere is a vast literature, both frequentist and Bayesian, devoted to the questionof deiding whether a ontingeny table with moderate numbers of ounts, saysomething like C0 C1f0 8 3f1 16 26totals 24 29 (1)
shows a signi�ant di�erene between a ontrol sample C0 and a diagnosedsample C1 with respet to some feature or test with values f0 and f1.In this note, we briey review several frequently used methods, noting inpartiular the seemingly large disrepanies (previously noted by others) be-tween the Bayesian and frequentist answers obtained. We then show that thedisrepanies an be explained as an example of (so-alled) Lindley's Para-dox. Finally we suggest an \Okham-removed prior", motivated within a fullyBayesian framework, that eliminates the disrepanies.Table (1) is not hosen at random, by the way, but rather is a good exampleof the problem that we address. It has a p-value for the two-sided Fisher Ex-at Test (desribed below) of 0:0498; its two olumns thus appear to be drawnfrom signi�antly di�erent distributions (p < 0:05). A one-sided test (appro-priate if the prior expetation was that f0 would imply suppressed ounts inC1) would yield an even more signi�ant result, by a fator of two. On theother hand, a Bayes-fator alulation, omparing a single probability model toone with independent probabilities for the two olumns (with uniform priors forall probabilities) yields a Bayesian probability that the two olumns are iden-tially distributed of 0:3023; the two olumns thus seem to be not signi�antlydi�erent. Whih is the orret answer?1



2 Standard Frequentist ApproahAgresti [1℄ has given an enylopedi survey of the frequentist literature, whihwe will not attempt to repeat here. There is general agreement that moder-ate ount values require so-alled \exat" (as opposed to asymptoti) methods.One an quikly survey the web to determine what methods are most om-monly reommended as \standard", and most ommonly inluded in standardpakages.In brief, the standard approah for a table like (1) is:1. Choose a test statisti that quanti�es the disrepany with the null hy-pothesis that there is no assoiation between (C0; C1) and (f0; f1). Popularhoies are the Wald statisti and Rao's eÆient sore statisti.2. Choose a method, for example \Fisher's exat test" or \Barnard's exattest". The hoie of a method is equivalent to hoosing a distribution of2�2 tables against whih to ompare table (1). The reason that this is notentirely straightforward is that the ommon probability of f0 under thenull hypothesis is not known. Di�erent methods are, in e�et, di�erentestimations of this probability.3. Compute the one- or two-sided p-value (as appropriate), that is, the prob-ability of �nding in the population de�ned by the method a value of thetest as extreme as that seen.4. Rejet the null hypothesis (of no assoiation) if p < 0:05 (say).Within this paradigm, the single most popular (and therefore most standard)set of hoies is probably Fisher's exat test with the Wald statisti. For a 2�2table, C0 C1f0 m nf1 M �m N � ntotals M N (2)
the Wald statisti is essentially the standardized di�erene of the observed prob-abilities under the null hypothesis,T = bp1 � bp2pbp(1� bp)(M�1 +N�1) (3)where bp1 � m=M; bp2 � n=N; bp � (m+ n)=(M +N) (4)2



(We will be areful not to onfuse the p, the ommon probability under the nullhypothesis, with the notation p that ours in a p-value test!)Fisher's Exat Test ompares the T statisti to the distribution of T of alltables with the same marginals, both olumn and row. For the example of table(1), say, this would be all tables of the formC0 C1f0 m 11�mf1 24�m 18 +mtotals 24 29 (5)
Sine all ell ounts must be positive, there are only 12 suh tables in thisexample. The probability of eah table under the null hypothesis is the hyper-geometri probability, here,P (m) = �24m�� 2911�m�,�5311�; 0 � m � 11 (6)Beause of the small number of distint tables in the population, only ertaindisrete p-values are possible, a widely noted fat that we will revisit below.Barnard's Exat Test, proposed two deades after Fisher, was one attempt toeliminate this artifat. See [5℄ for a pedagogial omparison of the two methods.Any of these, or similar, methods is open to the usual ritiism of p-tests,namely that di�erent hoies of statisti an give rather di�erent tail probabil-ities for a given data set. In pratie, the di�erenes are rarely large, however.Sine this issue is ommon to all p-tests, it is always swept under the rug.More serious is the issue in Step 2 above, namely the (impliit) estimationof the ommon probability P under the null hypothesis. The problem withany suh hoie is that, in general, it will not be the result of a onsistentestimator on the population from whih the table was atually drawn. Thusthe p-values �nally obtained are not tail probabilities of the test statisti for theatual experiment. In no sense is it preisely true that the null hypothesis willbe inorretly rejeted only 1 time in 20. This is a ommon Bayesian objetionto many frequentist proedures, namely their reliane on assumed (non-unique)distributions of results that might have been seen, but in fat were not.3 Bayesian ApproahesAgresti [2℄ has surveyed the Bayesian literature in a reent review. Beause theuse of a Bayesian methodology in analyzing ontingeny tables is unommon,it is harder to identify a \standard" Bayesian approah. The most obvious and3



straightforward approah, namely the use of Bayes fators, is rarely used. Thereason for this avoidane seems to be preisely the issue that we raise (andresolve) in this note, namely the apparent large disrepanies between Bayesfator methods and other methods (both Bayesian and tail-test), always in thedemoralizing sense that the Bayes fator is less powerful in disproving the nullhypothesis of no assoiation (i.e., less able to �nd signi�ant assoiations).Je�reys, in later editions of his book [4℄, develops the Bayes fator methodfor 2 � 2 ontingeny tables, similarly to the alulation below. He gives twonumerial examples, one of whih yields a probability (of the null hypothesis)0:27, the other a respetable 0:0058. What Je�reys does not mention is thatFisher's Exat Test, applied to the same data, gives probabilities of 0:057 and0:00053, respetively. Good [3℄, working a series of examples, notes the disrep-anies between tail area probabilities and Bayes Fators, and attempts, withvery limited suess, to �nd an empirial relation between the two. (This notean be viewed as a more prinipled approah to Good's program.)Suppose H is the (null) hypothesis that the olumns are identially dis-tributed with prob(f0) = p, while H 0 is the alternative hypothesis that theolumns have di�erent probabilities prob(f0jC0;1) = p0;1. Then the Bayes fa-tor is (see, e.g., [7℄)prob(H jD)prob(H 0jD) = prob(DjH)prob(DjH 0) � prob(H)prob(H 0)= R prob(D; pjH) dpR prob(D; p1; p2jH 0) dp1dp2 � prob(H)prob(H 0)= R prob(DjH; p) prob(pjH) dpRR prob(DjH 0; p1; p2) prob(p1; p2jH 0) dp1dp2 � prob(H)prob(H 0) (7)From the binomial distribution, we haveprob(D; pjH) = �Mm�pm(1� p)M�m �Nn�pn(1� p)N�nprob(DjH 0; p1; p2) = �Mm�p1m(1� p1)M�m �Nn�p2n(1� p2)N�n (8)For now, we take the prior ratio on the hypotheses as unity, prob(H)=prob(H 0) =1. While we might well assume uniform priors on p, p1, and p2 in (0; 1), a moregeneral hoie is to use the onjugate priorprob(pjH) / p��(1� p)��prob(p1; p2jH 0) / p1��(1� p1)��p2��(1� p2)�� (9)where 0 � � < 1. With these hoies, equation (7) readily yieldsF � prob(H jD)prob(H 0jD) = B(m+ n+ 1� 2�;M +N �m� n+ 1� 2�)B(m+ 1� �;M �m+ 1� �)B(n + 1� �;N � n+ 1� �)(10)4



where B is the beta funtion.In equation (10), one may interpret 1 � � as a onstant number of ountsadded by the prior to eah of the observed ounts m, n, M �m, and N � n.(This is a typial outome of using onjugate priors.) We will generally take� = 1=2, but our results are not sensitive to this hoie.We an now readily demonstrate what is the problem that Je�reys ignoredand Good puzzled over. We de�ne a population of 2� 2 ontingeny tables bythe presription:� Choose M and N uniformly i.i.d. between 5 and 100.� Choose m uniformly in 0 : : :M , and n uniformly in 0 : : :N .For tables drawn randomly from this population we ompute the two-sidedFisher's Exat Test (with the Wald statisti) p-value, and also the Bayesianprobability of the null hypothesis from equation (10), that is, F=(1 + F ). Theresult is shown in Figure 1. Evident is a strong tendeny for the Bayes proba-bility to lie at values > 0:1, making rejetion of the null hypothesis impossible,even in ases where Fisher's test rejets the null hypothesis as strongly as 0:005.While some more fervent Bayesians have rationalized this result as, somehow,a good thing { an intrinsi onservatism of the Bayes fator { most have insteadsubstituted di�erent Bayesian methods (as reviewed in [2℄) without this aw.A simple example is to use a Bayesian quantity like prob(p1 > p2) as a tailstatisti (Good's so-alled \Bayes/non-Bayes ompromise"). Similar argumentsto those leading to equation (10) giveprob(p1 > p2) = RRp1>p2 dp1dp2 p1m��(1� p1)M�m��p2n��(1� p2)N�n��B(m+ 1� �;M �m+ 1� �)B(n + 1� �;N � n+ 1� �)(11)where the integrals must be done numerially for eah set of fm;n;M;N; �g.To get a two-sided tail probability to ompare to two-tailed Fisher, we take thesmaller of prob(p1 > p2) and prob(p2 > p1) and multiply it by 2.Figure 2 shows the result. Muh of the vertial dispersion an be understoodas due to the disreteness of the Fisher Exat Test's p-values. Simply hanging� to < in the de�nition of the Fisher test moves many points that lie abovethe diagonal to loations below the diagonal. With this aveat, it is fair toonlude from the Figure that the two tail tests are measuring essentially thesame property of the ontingeny tables.The linearity and small dispersion of Figure 2 further suggests that there isnothing \wrong" with the Bayesian probabilities p1 and p2, and that the dis-repany shown in Figure 1 must lie in either the ommon probability p (whihturns out not to be the ase), or in the way that the Bayes fator ompares pwith p1 and p2 (whih turns out to be preisely the ase).
5
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Bayes Factor ProbabilityFigure 1: The Bayes fator probability of the null hypothesis F=(1 + F ) isplotted against Fisher's Exat Test p-value (two-tailed) for a sample of 2 � 2ontingeny tables. The Bayes fator often fails to rejet the null hypothesis,even when it is strongly rejeted by the p-value test.4 Lindley's ParadoxLindley's Paradox (see [6℄ for a review of the literature) is a name given toexatly the situation that we have just seen: Analysis based on Bayes fatorodds ratios an award a high probability to a sharp null hypothesis, even whenthat hypothesis is easily rejeted by a tail test.The anonial example of Lindley's paradox is that of measuring a singlenormal variable y with known (small) �, but unknown mean �. The null hy-pothesis H is that � has a ertain value �0. The alternative hypothesis H 0 is
6



 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 1e-006  1e-005  0.0001  0.001  0.01  0.1  1

F
is

h
er

’s
 E

x
ac

t 
p

-V
al

u
e 

(T
w

o
-T

ai
le

d
)

Bayesian p-Value (Two-Tailed)Figure 2: The Bayes tail probability p-values are plotted against Fisher's ExatTest p-values (two-tailed) for the same sample of 2�2 ontingeny tables. Someof the variane seen results from the disreteness of Fisher p-values.that it has some other value. We then write (f. equation 7),prob(H jD)prob(H 0jD) = prob(DjH)prob(DjH 0) � prob(H)prob(H 0)= prob(DjH)R prob(DjH 0; �) prob(�jH 0) d� � prob(H)prob(H 0)= (2��2)�1=2 exp(�[y � �0℄2=[2�2℄)R (2��2)�1=2 exp(�[y � �℄2=[2�2℄)prob(�jH 0) d� � prob(H)prob(H 0)� (2��2)�1=2 exp(�[y � �0℄2=[2�2℄)prob(yjH 0) � prob(H)prob(H 0) (12)where the approximation is that, for small �, the Gaussian in the denominatorapproximates a Dira delta funtion.Attention now fousses on the surviving prior on y in the denominator.The broader we make our prior on y, the smaller prob(yjH 0) beomes, and themore the null hypothesis is favored. The so-alled paradox is that as we tryto take the limit of omplete ignorane of y { seemingly allowing it to have an7



arbitrarily large range { we simultaneously make it impossible to disprove thenull hypothesis that it has the value y0.Lindley's paradox is also a good example of \it's not a bug, it's a feature!".If we take prob(yjH 0) = 1ymax � ymin ; ymin < y < ymax (13)(and zero elsewhere), then many Bayesians (e.g., [7℄) would rewrite the last lineof equation (12) asprob(H jD)prob(H 0jD) � exp(�[y � �0℄2=[2�2℄)� ymax � ymin(2�)�1=2� � prob(H)prob(H 0) (14)They would then identify the seond fator on the right as a so-alled \Okhamfator", by whih any arbitrary new parameter added to a theory ought tobe penalized, so as to avoid the over�tting of data. Indeed, the automatiemergene of Okham fators in Bayesian alulations is taken as a strength,not a weakness, of the formalism. Okham fators play, in a Bayesian ontext,the role that Bonferroni orretions play in a frequentist ontext: both serve todisount the signi�ane of inferenes made from multiple hypotheses.Notie that the third fator in equation (14) is also a prior, namely the priorodds ratio between H and H 0. This is often taken as unity, meaning that thereis no reason to prefer H over H 0 a priori. But is unity atually the orret\neutral" prior?5 Use of Okham-Removed Priors to Resolvethe ParadoxThe perspetive of this note is that there is less here than meets the eye; thatLindley's paradox results simply from a onfusion between two oneptuallydi�erent uses of added parameters; and that the Bayesian framework alreadyprovides the means for disentangling this onfusion.When we add a parameter � to a model in order to �t the data better,we hope for a narrow posterior probability for its values, whih we will likelysummarize as a value and unertainty. We are disappointed if the posterioris broad and uninformative. It is of no partiular onsequene if the posterior\nothes out" (i.e., eliminates) any partiular value �0 of the new parameter.On the other hand, when we add a parameter to a model spei�ally as asa foil for a null hypothesis value �0, then the situation is ompletely reversed:We are not bothered if the posterior on � is broad, and we are not partiularlyinterested in its value if it is narrow. Rather, we hope for a lear \noth" on�0, suh that that partiular value an be rejeted.The Bayes fator formalism provides the means for distinguishing betweenthese two di�erent situations, by allowing us to hoose di�erent interpretationsfor the third fator, the overall prior odds ratio, in equation (14). In the aseof the �rst situation, the interpretation given above is appropriate: Unity prior8



odds ratio means neutrality on whether to add a �tting parameter. Indeed, aslight reworking of equations (12) and (14) would yield the Bayes InformationCriterion (BIC) as an indiator of whether an additional model parameter isfavored. The \automati" Okham fator is entirely appropriate in this situa-tion.In the ase of the seond situation, however, there is no reason for us tobe slaves to the previous meaning of the overall prior. Rather, knowing thatour interest is in disproving a null hypothesis, we are free to hoose a priorthat orrets for (i.e., \undoes") the Okham fator. In other words, the trulyneutral prior for this situation is the inverse of the Okham fator, favoringthe alternative hypothesis. The distintion is between parameter �tting (witha possibly variable number of parameters), on the one hand, and signi�anetesting on the other.The population of 2 � 2 ontingeny tables de�ned above provides a nietest of our laims. The only ompliation is that there is a parameter p in thenull hypothesis, and two parameters p0;1 in the alternative hypothesis. Thusour neutral prior for signi�ane testing will be the ratio of the two (estimated)Okham's fators.For the null hypothesis, the Okham fator K0 is estimated as the range ofp (that is, unity) divided by an estimate of the unertainty in p,K0 � 1pp̂(1� p̂)=(M +N) (15)where p̂ � (m+ n)=(M +N) (16)For the alternative hypothesis, the Okham fator K1 is estimated as the areaof the unit square, divided by the produt of the unertainties of p0 and p1.K1 � 1pp̂0(1� p̂0)p̂1(1� p̂1)=(MN) (17)where p̂0 � m=M; p̂1 � n=N (18)The neutral prior is thus taken asprob(H)prob(H 0) = K0K1 (19)Figures 3 and 4 show the omparison between the Bayes fator probabilitywith Okham-removed prior and either the two-tailed Fisher Exat Test (Figure3) or, from equation (11), the Bayesian tail probability (two-tailed). The latter�gure is most enlightening, sine it does not have the disreteness artifats ofFisher's test.With the Okham-removed prior, there is a very tight agreement betweenthe tail probability and the Bayes fator probability, extending from small p-values all the way up to almost unity. The urvature near p = 1 is readily9
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"Ockham-Removed" Bayes Factor ProbabilityFigure 3: Use of an Okham-removed prior (equation 19) brings the Bayes fatormethod into good agreement with Fisher's Exat p-value. The disrepany nearp = 1 is beause any two-tailed test has the value 1 when its tails \ross", whilethe Bayes fator method never assigns probability 1 to the null hypothesis.explained as an artifat of tail tests: As the tail probability inreases, it even-tually rosses 50% (so that the two-tailed probability reahes unity), at whihpoint the de�nition of the tails is reversed. Thus there will be a substantialpopulation very near unity. For the Bayes fator probablity, on the other hand,unity probability for the null hypothesis is a limiting ase that is never reahed.6 ConlusionsWhen applied to ontingeny tables, Bayes fator methods have long beenknown to support the null hypothesis (of no assoiation), even when tail testsstrongly indiate otherwise. This tendeny is an example of Lindley's Paradox,and is due to the so-alled Okham fator that naturally arises in Bayes fatormethods.Okham fators are appropriate in parameter-�tting appliations, as safe-guards against over�tting. In suh appliations, they are losely related to theBayes Information Criterion (BIC) for deiding whether to add a new parame-10
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"Ockham-Removed" Bayes Factor ProbabilityFigure 4: Same as Figure 3, but using the Bayesian tail probability (equation11) instead of the Fisher test, thus eliminating the variane due to the latter'sdisreteness. As in Figure 3, the urvature at the upper left is an artifat of thetail test when its tails ross.ter.However, Okham fators are not appropriate when an added parameter issimply a nuisane \foil" against whih the signi�ane of a null hypothesis isto be tested. In suh a ase, the \neutral" prior odds ratio is not unity, but israther the inverse of the Okham fator.If we use an \Okham-removed" prior, then tail tests and the the Bayes fatormethod give very nearly idential results. We should not expet exatly identialresults, even on average: On the frequentist side, the hoie of a di�erent tailstatisti will give di�erent results. On the Bayesian side, our estimation of theOkham fator is only approximate, and is open to disussion at the level offators lose to unity.7 AknowledgmentsI thank Rik Piard for pointing me to the literature on Lindley's Paradox, andDave Higdon for useful disussions. 11
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