
Working Note on Bilinear Predition ofRelatednessWilliam H. PressMarh 28, 20051 The SetupWe have a set of objets fAg indexed as Ai, with i = 1; : : : ; I , and another setof objets fBg indexed as Bj , with j = 1; : : : ; J . The A's and B's are not thesame kinds of of objets, and, in general, I 6= J .Eah Ai has real-valued \features" indexed by m = 1; : : : ;M . So, Aim isthe matrix of the values of these features for all the A's. (Eah A has the sameset of features, but not, in general, the same values.)Similarly, eah Bj has features indexed by n = 1; : : : ; N . Bin is the matrix ofthe values of these features for all the B's. In general, M 6= N , and there neednot be any partiular orrespondene between features of the A's and featuresof the B's.As training data, we are given a \relationship matrix" Wij de�ned byWij = (+1 if Ai is \related" to Bj , or�1 if Ai is \not related" to Bj (1)There are no other onstraints on Wij . That is, the \relationship" need have nospeial properties (e.g., one-to-one). Note that Wij is not symmetri; in fat,not even generally square.The problem is: Given the feature matries Aim and Bjn, \predit" whetherAi and Bj are related { that is, predit the value of Wij . We want to \learn"how to do this for the Wij provided as training data, and we will then apply itto additional A's and B's not in the training data.2 The ApproahThe approah is pure linear algebra. The basi idea look for a linear ombinationofA's features (with values denoted Ai�) and a linear ombination ofB's features(with values denoted Bj�) the sign of whose produt predits Wij in some best-�t sense, Wij � sign(Ai�Bj�) (2)1



More spei�ally, we proeed as follows:1. Standardize the features of both fAg and fBg to have zero mean andunit variane: bAim � Aim � hAxmixh(Aym � hAxmix)2iy1=2bBjn � Bjn � hBxnixh(Byn � hBxnix)2iy1=2 (3)2. De�ne Ai� and Bj� in terms of unknown oeÆients �m and �n byAi� �Xm �m bAim with Xm �2m = 1Bj� �Xn �n bBjn with Xn �2n = 1 (4)3. Solve for optimal �'s and �'s by maximizing the magnitude of the multi-linear (linear in A's, B's, and W 's) �gure-of-merit funtionF.M. = hAi�WijBj�iij / Xijmn�m bAimWij bBjn�n � �T bATWbB� (5)subjet to the normalization onstraints on the �'s and �'s. The matrix notationis self-explanatory.3 Method of SolutionUsing Lagrange multipliers to impose the onstrants, we want to �nd the ex-trema of �T bATWbB� � 12�A�T�� 12�B�T� (6)Taking derivatives with respet to eah of the �m's and �n's gives this (non-standard) eigenvalue problem: bATWbB� = �A�bBTWT bA� = �B� (7)I know of two ways to solve this eigenproblem, a good way and a bad way.The bad way (given �rst beause it is pedagogially more straightforward) is todivide one of the above equations by its eigenvalue �fA;Bg and then substituteinto the other equation. This gives two unoupled symmetri eigenproblems instandard form, bATWbBbBTWT bA� = (�A�B)�bBTWT bAbATWbB� = (�A�B)� (8)2



The �rst equation will haveM eigenvalues, all non-negative (sine the matrix isa \perfet square"). The seond equation will have N non-negative eigenvalues,idential to those of the �rst equation, exept that ifM 6= N , the larger problemwill be padded out with additional zero eigenvalues. (Proof left as exerise forreader.)Chosing any eigenvalue � idential between the �rst and seond problem,its orresponding eigenvetors are solutions for � and � that will satisfy theoriginal problem, equation (7), with�A = �B = p� (9)What is \bad" about this method is that in e�etively squaring the originalmatrix we have squared the ondition number of the problem, so the solutionis numerially sensitive to roundo� error.The \good" solution, whih gives idential results but more stably (and withless work) is this:Compute the singular value deomposition (SVD) of the matrix bATWbB,namely bATWbB = Udiag(w)VT (10)where U and V are olumn-orthonormal matries. Then for eah singular valuewk, the orresponding olumn ofU is a solution � and the orresponding olumnof V is the orresponding �. The values of �A and �B are both wk, and we alsohave (f. equation 5), �T bATWbB� = wk (11)Proof of all this left to the reader.4 DisussionWe started out looking for a single pair of linear ombinations Ai� and Bj�that extremize the �gure of merit (5). In the end, we have found (generially)min(M;N) suh pairs, all mutually orthogonal.The merit of eah pair is given by the orresponding singular value wk,so, in pratie, we will only be interested in pairs with large singular values{ signi�antly larger than might our by hane in some randomized ontrolrelationship matrix W 0ij , for example.The pairs are orthogonal in the sense that, if Ai� and A0i� are two suhextremal solutions, hAi�A0i�ii � 0 (12)(meaning exatly zero over the sample, and approximately zero over the popu-lation). And similarly for the Bj�'s. This suggests that we may be able to usemore than one solution in a single predition of a Wij . For example, we mightestimate log-odds for eah pair of \eigenfeatures" used separately (presumablythese are generally dereasing as the singular values get small), and then sumall the log-odds. I haven't looked into this yet.3


