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1 Introduction

Abbondanzieri et al. [1] have observed single base-pair stepping by RNA poly-
merase along DNA as the polymerase produces a new RNA transcript. At each
step, the RNAP binds a coding-appropriate NTP (that is, one of ATP, CTP,
GTP, and UTP) and incorporates it into the RNA. Varying the concentration
of the individual NTPs results in waiting times for particular steps that are
coding specific [2]. For example, if a particular NTP is starved, then there are
relatively long pauses before the steps that add that base pair. Starving each
NTP in turn results in a four-pass method for doing full sequencing at the single
molecule level, as actually accomplished by Greenleaf and Block.[2]

One immediately thinks of reducing the four-pass method to a single-pass
method by adjusting the NTP concentrations so as to make the mean waiting
times widely separated on a logarithmic scale, for example 1, 10, 102, and 103

time units. Then the observation of a single waiting time is informative (if with
some residual ambiguity) about all four base-pair possibilities. However, 25%
of the time, one must wait a long time, ∼ 103 time units, for the answer. So,
while the information content of a single observed step may be increased, the
information rate has become very low. In practice, of course, 103 would be such
a long time that other, confounding, sources of noise would dominate.

What about decreasing the logarithmic separation, which, while reducing
the information content per measurement, might give a larger information rate?
Or what about a different pattern of mean waiting times entirely?

In this note we imagine the fanciful or futuristic scenario in which large-scale
sequencing is performed by observing the times of single-molecule steps, and in
which high accuracy is achieved by multiple resequencing. In such a scenario,
we want to maximize the information rate or throughput associated with each
measurement. We will show how to quantify this, and we will solve for values
of the mean waiting times (which can be mapped to NTP concentrations) that
achieve the maximum information throughput.
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OK, so you just want to know the answer? It turns out to in fact be optimal
to do one base pair at a time and not try to get information that separates the
other three. Maximum information throughput is obtained when three (non-
informative) bases have equal mean waiting times, and the (informative) fourth
base has a mean waiting time about 6.66 times longer. The rest of this note
derives this result.

2 Assumptions and Setup

For each nucleotide i = A, C, G, U , we assume an exponential distribution of
waiting times with rate λi, adjustable by the experimenter by varying NTP
concentrations. For simplicity, we assume that the distribution of bases on the
DNA template is uniform and base-to-base independent. If p(t, i) is the joint
probability of seeing a waiting time t resulting in the addition of nucleotide i,
then we have,

p(t, i) = 1
4λi exp(−λit) (1)

Note that ∫ ∞

0

∑
i

p(t, i)dt = 1 (2)

Also of interest is the unconditional probability of a waiting time t, denoted
p(t), and the conditional probability of seeing nucleotide i given t, denoted
p(i|t). These are given by

p(t) = 1
4

∑
i

λi exp(−λit) (3)

and

p(i|t) =
λi exp(−λit)∑
j λj exp(−λjt)

(4)

From a single observed waiting time t, we infer a probability distribution for
the four possible values of i, namely p(i|t), i = A, C, G, U . The figure of merit
for this distribution—its information content in bits—is

I(t) ≡ 2 − H(t) = 2 +
∑

i

p(i|t) log2 p(i|t) (5)

a quantity with value between 0 and 2 (bits). This can be viewed as either
the Shannon negentropy (that is, the entropy deficit from a uniform, noninfor-
mative, 2-bit distribution), or, similarly, as the Kullback-Leibler distance from
a uniform prior distribution. (See, e.g., [3].) It is well known, and we will
not derive here, that the mean number of independent measurements necessary
to achieve a desired certainty of classification, as measured by a fixed log-odds
threshold, varies inversely with the information content defined by equation (5).
The value I(t) = 2 implies a perfect classification, that is, an error-free choice
among A, C, G, U . The value I(t) = 0 implies no information.
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Equation (5) is conditioned on a particular value of t, which we do not
control. The expectation over the values of t that we expect to observe is

E[I(t)] =
∫ ∞

0

p(t)I(t)dt

= 2 + 1
4

∫ ∞

0

∑
j

λje
−λjt

[
log2

(
λje

−λjt
)− log2

(∑
i

λie
−λit

)]
dt

(6)

where some algebra has been performed.
While some further algebraic simplification of E[I(t)] is possible, the core

expression, ∫ ∞

0

⎛
⎝∑

j

λje
−λjt

⎞
⎠ ln

⎛
⎝∑

j

λje
−λjt

⎞
⎠ dt (7)

which is a function of the four λi’s, requires numerical integration. However, the
single-exponential convergence of the integrand admits very efficient integration
methods, such as the DE rule.

The mean rate at which the RNAP steps is the harmonic mean of the four
λi’s,

λm = 4

/∑
j

λ−1
j (8)

The final figure of merit that we want to maximize over all choices of λi’s is
then

F.M. = λmE[I(t)] (9)

in units of information bits per unit time. As one might expect, this goes to
infinity if all the λi’s are increased simultaneously, corresponding to infinite
stepping rates. The interesting case is to set one of the λi’s to unity, defined
as the most rapid mean rate at which individual steps can be measured, and
then maximize over the other three λi’s, with the constraint that they be all
less than unity. This we now do.

3 Results

We accomplish the numerical maximization by standard hill-climbing methods.
Although we cannot offer a proof that equation (9) has only a single maximum,
we obtain the same maximum (up to permutations of the λi’s) from many
different starting points. Interestingly, the answer is not in the interior region
(with four separated values) but is rather

λ0 = 1 (defined)
λ1 ≈ 1
λ2 ≈ 1
λ3 ≈ 0.150

F.M. ≈ 0.1397

(10)
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That is, two of the three free λi’s are always driven to the constraint limit of 1.
The reciprocal of 0.150 is the value 6.66 that was quoted in the introduction (for
a waiting time, reciprocal to a rate). While 0.14 bits may not seem like a lot, note
that it is obtained (on average) per waiting time for the fast (noninformative)
bases. In fact, with the assumptions made, this is the best one can do.
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