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The human genome is about Nhg = 3.08× 109 bases long. The task at hand
is perhaps the most basic one in genomics: Given a short “test” sequence of,
say, 50 to 100 bases from somewhere in the genome, find its location.

In practice, there are other considerations as well. Is the test sequence free
of errors, or do we need an algorithm that is robust against errors? Are we doing
only . 106 lookups, are do we need the speed to do & 109? Are we limited to
the memory footprint of 32-bit machines (that is, . 3 GB), or can we afford 16
or 64 GB of memory?

Here, we first consider the case where high speed is needed, memory footprint
must be small, and the test sequence is (relatively) error-free.

Naive Multi-Hashing

For sheer lookup speed, it is hard to do better than to hash the whole genome
into a hash multimap structure. Specifically, starting at each base along the
genome, we take nh sequential bases as an index key and store the starting base
address (that is, offset from the beginning of the genome) in a hash multimap
memory, which allows the recovery of an arbitrary number of stored elements
from a single key.[1] If we take nh ∼ 25, then most keys, but not quite all, are
unique in the human genome.

To do a lookup on a test sequence of length M ∼ 100 (say), find all stored
addresses of nk = ⌈M/nh⌉ ∼ 4 keys that span the test sequence, and subtract
from each returned address the offset of its key in the test sequence. The desired
address or addresses are the ones that occur in all nk keys. In the absence of
sequence errors, this method returns all exact matches and no others. It is very
fast, < 100 operations per lookup, including the hash function.

The problem is memory footprint. A fairly tight multihash implementation[1]
needs ≈ 30 bytes per stored value, amounting to 100 GB for the human genome.
We want to achieve roughly the same functionality in about 100 times less mem-
ory footprint.

Other Methods

[Mention Bowtie, etc., here.]
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Decimation

A trivial observation is that we don’t need to store an address for every base
in the genome. Instead of constructing an index key at each base, we can
contemplate decimating by d, that is, storing only one in every d addresses.

Of course, at lookup time, we must now probe the hash memory at d con-
secutive offsets to access a single stored key. How do we know which of these
d has the right phase? Easy: Only the correct phase will produce addresses
in common among the nk probes, and it is computationally easy to find these
common addresses.

So decimation by d is a good thing, but not, by itself, good enough to get a
factor 100. Decimating by that much would leave many sequences not indexxed
by even a single key. And we have seen that we need at least two keys to
mutually validate each other.

Random Collision Resolution

Let’s come at this a little bit differently. Suppose we can afford the memory
for a single array of N addresses into the genome, therefore amounting to 4N
bytes. Call this the “N-array”. For a 1 GB footprint, we have N ≈ 250 × 106.

We now hash Nhg/d index keys into the N-array. The mean coverage (mean
number of collisions per array location) is

λ =
Nhg

Nd
(1)

Suppose that whenever m addresses would collide into a single element in the
N-array, we store exactly one of the m with uniform probability. (We explain
below how to do this.)

To see what is going on, let us make the radical assumption that the number
of collisions in each cell is Poisson distributed with mean λ. Consider now the
lookup of a particular index key from a particular test string. This key hashes
into some particular element of the N-array. We call that element “useful” if
it contains (up to the known small offset) the address of our test string. The
probability of this is

P (λ) =

(

∞
∑

m=1

1

m

1

m!
λme−λ

)

/

(

1 − e−λ
)

(2)

Here, the numerator can be understood as the expectation over the Poisson
probability distribution of 1/m. That is, if an element is hashed from m keys,
then there is only 1/m chance that it contains the address that we need. The
denominator renormalizes the Poisson distribution to account for the fact that
elements pointed to by no keys at all are not relevant to the expectation.

Although larger P (λ) is generally good, the actual figure of merit is the
density of useful starting positions in the test string – that is, the density of
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starting positions that hash to useful N-array elements. This has an additional
dependence on λ through d (equation (1)),

P (λ)

d
=

[

λN

Nhg

]

P (λ) =
N

Nhg

λP (λ) ≡
N

Nhg

ρ(λ) (3)

with the proviso that the term in square brackets must be less than 1, since
d < 1 makes no sense. In other words, we may choose λ no larger than Nhg/N .
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Figure 1: Dimensionless density of useful cells ρ as a function of coverage pa-
rameter λ.

Independent of the values of N and Nhg, we see that the optimum occurs
for the value of λ that maximizes the function ρ(λ), which is plotted in Figure
1. The function has a maximum of about 1.320 at λ = 3.75. At the easier-to-
remember value λ = 4., the function value is ρ(4.) = 1.319, hardly different,
with P (4) = 0.324.

It is perhaps surprising that the optimal value of λ is so large, implying
≈ 4 collisions per N-array element. Let’s see how the numbers work out. For
Nhg = 3 × 109, N = 250 × 106, λ = 4, we have from equation (1),

d =
Nhg

4N
= 3 (4)

so we decimate by 3 (compute index keys every third starting base). The mean
distance between useful keys is

d

P (λ)
=

Nhg

ρmaxN
= 9.23 (5)

We might ask (for example) what is the length of test sequence needed so that
there is less than 1% probability of failing to get 2 or more useful keys:

e−µ + µe−µ ≤ 0.01 ⇒ µ ≥ 6.6 (6)
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So 9.23 × 6.6 = 60 bases estimates the required length of test sequence.

Constructing the Index

As implied above, the index is constructed by marching through the genome
with stride d, hashing genomic addresses into the N-array. The only detail
requiring explanation is how, when m addresses will collide in one location,
a random one is chosen. This requires an additional byte array of length N ,
initialized to zero, which keeps track of the number of keys that have hashed
to each location in the N-array. When the mth such key is encountered, it is
allowed to overwrite the N-array location with probability 1/m. It is easy to see
by induction that this results in an equiprobable distribution without needing
to know in advance the final value of m. (Collision counts are arbitrary capped
at m = 255, but by this value there is essentially no contribution to the utility.)
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Figure 2: Empirical distribution of number of hash collisions for the human
genome with λ = 4 (blue), and Poisson distribution with the same λ (red).

Beyond the Poisson Assumption

We have used the Poisson model to estimate an optimal value λ ≈ 4, implying
(for the other parameters above) d = 3. For the actual human genome, as a
byproduct of constructing the index with an particular value of index key length
nh, we can evaluate the empirical analog of equation (2),

Pobs =

(

∞
∑

m=1

1

m
Pm

)

/

(1 − P0) (7)
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where Pm is now the observed probability that an N-array element has m col-
lisions. For genome assembly hg18, with nh = 20, we find Pobs ≈ 0.45. This is
significantly better than the Poisson model’s value best value 0.32. The expla-
nation is that hg18 has more keys with high multiplicity than the Poisson model.
Since there is little utility in these anyway (1/m being small), overpopulating
them results in lower multiplicities for the other keys, hence larger average 1/m.
This effect is illustrated in Figure 2.

Implementation Tests

[Describe tests.]
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