Bayesians: Pay No Attention to Neyman-Scott

William H. Press

March 14, 2016

Maximum likelihood estimates (MLEs) are not necessarily consistent, meaning that they do not necessarily converge to the value of the underlying parameter being estimated, even in the limit of an infinite amount of data. A particularly clear example is the so-called Neyman-Scott Paradox (J. Neyman and E.L. Scott, Econometrica, 16, 1, 1948).

Consider pairs of i.i.d. random deviates $\left(x_{i}, y_{i}\right), i=1, \ldots, N$,

$$
\begin{equation*}
x_{i} \sim N\left(\mu_{i}, \sigma^{2}\right), \quad y_{i} \sim N\left(\mu_{i}, \sigma^{2}\right) \tag{1}
\end{equation*}
$$

That is, each pair $\left(x_{i}, y_{i}\right)$ has its own mean μ_{i}, but all the pairs share a common variance σ^{2}. The plethora of μ_{i} 's are to be viewed as uninteresting nuisance parameters. Our goal is to estimate the common σ^{2} using all the data, that is, all N pairs of values.

The likelihood function is

$$
\begin{equation*}
\mathcal{L}=\frac{1}{(2 \pi)^{N} \sigma^{2 N}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i}\left[\left(x_{i}-\mu_{i}\right)^{2}+\left(y_{i}-\mu_{i}\right)^{2}\right]\right\} \tag{2}
\end{equation*}
$$

The log-likelihood is thus

$$
\begin{equation*}
\ln \mathcal{L}=-N \ln (2 \pi)-N \ln \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i}\left[\left(x_{i}-\mu_{i}\right)^{2}+\left(y_{i}-\mu_{i}\right)^{2}\right] \tag{3}
\end{equation*}
$$

We can obtain the MLE by setting the derivatives of the log-likelihood with respect σ^{2} and all of the μ_{i} 's to zero, yielding the equations

$$
\begin{equation*}
0=\frac{\partial \ln \mathcal{L}}{\partial \sigma^{2}}=-\frac{N}{\sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i}\left[\left(x_{i}-\mu_{i}\right)^{2}+\left(y_{i}-\mu_{i}\right)^{2}\right] \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
0=\frac{\partial \ln \mathcal{L}}{\partial \mu_{i}}=\frac{x_{i}+y_{i}-2 \mu_{i}}{\sigma^{2}} \tag{5}
\end{equation*}
$$

whose simultaneous solution yields the MLE estimators

$$
\begin{equation*}
\widehat{\sigma^{2}}=\frac{1}{4}\left\langle(X-Y)^{2}\right\rangle, \quad \widehat{\mu_{i}}=\frac{1}{2}\left(x_{i}+y_{i}\right) \tag{6}
\end{equation*}
$$

where we have defined in the obvious way

$$
\begin{equation*}
\left\langle(X-Y)^{2}\right\rangle \equiv \frac{1}{N} \sum_{i}\left(x_{i}-y_{i}\right)^{2} \tag{7}
\end{equation*}
$$

The problem with the first equation in (6) is that it is "wrong" by a factor of 2 no matter how large N is,

$$
\begin{equation*}
E\left[\widehat{\sigma^{2}}\right]=\frac{1}{4} E\left[\frac{1}{N} \sum_{i}\left(x_{i}-y_{i}\right)^{2}\right]=\frac{1}{4}\left(2 \sigma^{2}\right)=\frac{1}{2} \sigma^{2} \tag{8}
\end{equation*}
$$

Thus, the MLE is not consistent. The problem is that the number of nuisance parameters μ_{i} grows with the data size N. The small-sample bias in the MLE for σ^{2} from a single pair $\left(x_{i}, y_{i}\right)$ is replicated in every such pair, rather than being averaged away asymptotically.

So much for MLE. How does a Bayesian approach the same problem? Maximum a posteriori (MAP) is the Bayesian's close analog of frequentist MLE. The analog of the likelihood, equation (2), is the posterior probability,

$$
\begin{align*}
P\left(\left\{\mu_{i}\right\}, \sigma \mid\left\{x_{i}, y_{i}\right\}\right) & \propto \frac{1}{(2 \pi)^{N} \sigma^{2 N}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i}\left[\left(x_{i}-\mu_{i}\right)^{2}+\left(y_{i}-\mu_{i}\right)^{2}\right]\right\} \\
& \times P\left(\left\{\mu_{i}\right\}, \sigma^{2}\right) \tag{9}
\end{align*}
$$

where $P\left(\left\{\mu_{i}\right\}, \sigma^{2}\right)$ is the prior on the parameters. Let's assume a uniform (i.e., non-informative) prior on all the μ_{i} 's, and (for now) any desired prior $P\left(\sigma^{2}\right)$ on σ^{2}. Then we can marginalize over the nuisance parameters μ_{i} by

$$
\begin{align*}
P\left(\sigma \mid\left\{x_{i}, y_{i}\right\}\right) & \propto \iint \cdots \int P\left(\left\{\mu_{i}\right\}, \sigma \mid\left\{x_{i}, y_{i}\right\}\right) d \mu_{1} d \mu_{2} \cdots d \mu_{N} \\
& \propto \prod_{i} \int \frac{1}{2 \pi \sigma^{2}} \exp \left[-\frac{\left(x_{i}-\mu_{i}\right)^{2}+\left(y_{i}-\mu_{i}\right)^{2}}{2 \sigma^{2}}\right] d \mu_{i} \times P\left(\sigma^{2}\right) \\
& \propto \prod_{i} \frac{1}{2 \sigma \sqrt{\pi}} \exp \left[-\frac{\left(x_{i}-y_{i}\right)^{2}}{4 \sigma^{2}}\right] \times P\left(\sigma^{2}\right) \tag{10}
\end{align*}
$$

where the integral over each μ_{i} has been done analytically.
To see what is going on in equation (10), take its logarithm,

$$
\begin{equation*}
\ln P\left(\sigma \mid\left\{x_{i}, y_{i}\right\}\right)=\text { const }-N \ln \sigma-\frac{N}{4 \sigma^{2}}\left\langle(X-Y)^{2}\right\rangle+\ln P\left(\sigma^{2}\right) \tag{11}
\end{equation*}
$$

As N becomes large, the assumed prior on σ^{2} becomes negligible as compared with the the terms contining σ that scale as N, so that the prior becomes immaterial (as it should when there is a lot of informative data). The argmax of equation (11) is the MAP estimator,

$$
\begin{equation*}
\sigma^{2} \equiv \sigma_{\mathrm{MAP}}^{2}=\frac{1}{2}\left\langle(X-Y)^{2}\right\rangle \tag{12}
\end{equation*}
$$

Instead of equation (8), we have

$$
\begin{equation*}
E\left[\sigma_{\mathrm{MAP}}^{2}\right]=\frac{1}{2} E\left[\left\langle(X-Y)^{2}\right\rangle\right]=\frac{1}{2}\left(2 \sigma^{2}\right)=\sigma^{2} \tag{13}
\end{equation*}
$$

so the estimator is consistent.
The point is simply that marginalizing to get a MAP estimator gives the "right" (i.e., consistent) answer, while maximizing the functionally identical likelihood for MLE gives the "wrong" (i.e., inconsistent) answer. The unbounded number of nuisance parameters μ_{i} is not a problem for Bayes. They are regularized by their priors - in this case even when the non-informative prior is improper. Were I to summarize as, "As always, Bayes is better," I might attract some angry responses, so, I won't say that.

If we were to put a nontrivially different prior on the μ_{i} 's, either jointly or independently, we would get a different answer for $\sigma_{\text {MAP }}^{2}$. We should. Such a prior, by adding information about the values of the μ_{i} 's, would also add information about the value of σ^{2}. This would be consistently reflected in the MAP estimator.

