
Bayesians: Pay No Attention to Neyman-Scott

William H. Press

March 14, 2016

Maximum likelihood estimates (MLEs) are not necessarily consistent,
meaning that they do not necessarily converge to the value of the under-
lying parameter being estimated, even in the limit of an infinite amount of
data. A particularly clear example is the so-called Neyman-Scott Paradox
(J. Neyman and E.L. Scott, Econometrica, 16, 1, 1948).

Consider pairs of i.i.d. random deviates (xi, yi), i = 1, . . . , N ,

xi ∼ N(µi, σ
2), yi ∼ N(µi, σ

2) (1)

That is, each pair (xi, yi) has its own mean µi, but all the pairs share a
common variance σ2. The plethora of µi’s are to be viewed as uninteresting
nuisance parameters. Our goal is to estimate the common σ2 using all the
data, that is, all N pairs of values.

The likelihood function is

L =
1

(2π)Nσ2N
exp

{
− 1

2σ2

∑
i

[
(xi − µi)

2 + (yi − µi)
2]} (2)

The log-likelihood is thus

lnL = −N ln(2π)−N lnσ2 − 1

2σ2

∑
i

[
(xi − µi)

2 + (yi − µi)
2] (3)

We can obtain the MLE by setting the derivatives of the log-likelihood with
respect σ2 and all of the µi’s to zero, yielding the equations

0 =
∂ lnL
∂σ2

= −N

σ2
+

1

2σ4

∑
i

[
(xi − µi)

2 + (yi − µi)
2] (4)
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0 =
∂ lnL
∂µi

=
xi + yi − 2µi

σ2
(5)

whose simultaneous solution yields the MLE estimators

σ̂2 =
1

4

⟨
(X − Y )2

⟩
, µ̂i =

1
2
(xi + yi) (6)

where we have defined in the obvious way⟨
(X − Y )2

⟩
≡ 1

N

∑
i

(xi − yi)
2 (7)

The problem with the first equation in (6) is that it is “wrong” by a factor
of 2 no matter how large N is,

E[σ̂2] =
1

4
E

[
1

N

∑
i

(xi − yi)
2

]
=

1

4
(2σ2) = 1

2
σ2 (8)

Thus, the MLE is not consistent. The problem is that the number of nuisance
parameters µi grows with the data size N . The small-sample bias in the MLE
for σ2 from a single pair (xi, yi) is replicated in every such pair, rather than
being averaged away asymptotically.

So much for MLE. How does a Bayesian approach the same problem?
Maximum a posteriori (MAP) is the Bayesian’s close analog of frequentist
MLE. The analog of the likelihood, equation (2), is the posterior probability,

P ({µi}, σ|{xi, yi}) ∝
1

(2π)Nσ2N
exp

{
− 1

2σ2

∑
i

[
(xi − µi)

2 + (yi − µi)
2]}

× P ({µi}, σ2)

(9)

where P ({µi}, σ2) is the prior on the parameters. Let’s assume a uniform
(i.e., non-informative) prior on all the µi’s, and (for now) any desired prior
P (σ2) on σ2. Then we can marginalize over the nuisance parameters µi by

P (σ|{xi, yi}) ∝
∫ ∫

· · ·
∫

P ({µi}, σ|{xi, yi})dµ1dµ2 · · · dµN

∝
∏
i

∫
1

2πσ2
exp

[
−(xi − µi)

2 + (yi − µi)
2

2σ2

]
dµi × P (σ2)

∝
∏
i

1

2σ
√
π
exp

[
−(xi − yi)

2

4σ2

]
× P (σ2)

(10)
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where the integral over each µi has been done analytically.
To see what is going on in equation (10), take its logarithm,

lnP (σ|{xi, yi}) = const−N lnσ − N

4σ2

⟨
(X − Y )2

⟩
+ lnP (σ2) (11)

As N becomes large, the assumed prior on σ2 becomes negligible as compared
with the the terms contining σ that scale as N , so that the prior becomes
immaterial (as it should when there is a lot of informative data). The argmax
of equation (11) is the MAP estimator,

σ2 ≡ σ2
MAP =

1

2

⟨
(X − Y )2

⟩
(12)

Instead of equation (8), we have

E[σ2
MAP] =

1

2
E[

⟨
(X − Y )2

⟩
] =

1

2
(2σ2) = σ2 (13)

so the estimator is consistent.
The point is simply that marginalizing to get a MAP estimator gives the

“right” (i.e., consistent) answer, while maximizing the functionally identical
likelihood for MLE gives the “wrong” (i.e., inconsistent) answer. The un-
bounded number of nuisance parameters µi is not a problem for Bayes. They
are regularized by their priors—in this case even when the non-informative
prior is improper. Were I to summarize as, “As always, Bayes is better,” I
might attract some angry responses, so, I won’t say that.

If we were to put a nontrivially different prior on the µi’s, either jointly or
independently, we would get a different answer for σ2

MAP. We should. Such
a prior, by adding information about the values of the µi’s, would also add
information about the value of σ2. This would be consistently reflected in
the MAP estimator.
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