Bayesians: Pay No Attention to Neyman-Scott
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Maximum likelihood estimates (MLEs) are not necessarily consistent,
meaning that they do not necessarily converge to the value of the under-
lying parameter being estimated, even in the limit of an infinite amount of
data. A particularly clear example is the so-called Neyman-Scott Paradox
(J. Neyman and E.L. Scott, Econometrica, 16, 1, 1948).

Consider pairs of i.i.d. random deviates (z;,v;),i=1,..., N,
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That is, each pair (z;,y;) has its own mean p;, but all the pairs share a
common variance o2. The plethora of y;’s are to be viewed as uninteresting
nuisance parameters. Our goal is to estimate the common o2 using all the
data, that is, all N pairs of values.

The likelihood function is
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The log-likelihood is thus
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We can obtain the MLE by setting the derivatives of the log-likelihood with
respect o2 and all of the y;’s to zero, yielding the equations
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whose simultaneous solution yields the MLE estimators
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where we have defined in the obvious way
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The problem with the first equation in (6) is that it is “wrong” by a factor
of 2 no matter how large N is,
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Thus, the MLE is not consistent. The problem is that the number of nuisance
parameters p; grows with the data size N. The small-sample bias in the MLE
for o2 from a single pair (z;,y;) is replicated in every such pair, rather than
being averaged away asymptotically.

So much for MLE. How does a Bayesian approach the same problem?
Maximum a posteriori (MAP) is the Bayesian’s close analog of frequentist
MLE. The analog of the likelihood, equation (2), is the posterior probability,
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where P({y;},0?) is the prior on the parameters. Let’s assume a uniform

(i.e., non-informative) prior on all the y;’s, and (for now) any desired prior
P(c?) on ¢?. Then we can marginalize over the nuisance parameters y; by
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where the integral over each y; has been done analytically.
To see what is going on in equation (10), take its logarithm,
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As N becomes large, the assumed prior on o becomes negligible as compared
with the the terms contining o that scale as N, so that the prior becomes

immaterial (as it should when there is a lot of informative data). The argmax
of equation (11) is the MAP estimator,
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Instead of equation (8), we have
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so the estimator is consistent.

The point is simply that marginalizing to get a MAP estimator gives the
“right” (i.e., consistent) answer, while maximizing the functionally identical
likelihood for MLE gives the “wrong” (i.e., inconsistent) answer. The un-
bounded number of nuisance parameters p; is not a problem for Bayes. They
are regularized by their priors—in this case even when the non-informative
prior is improper. Were I to summarize as, “As always, Bayes is better,” 1
might attract some angry responses, so, I won’t say that.

If we were to put a nontrivially different prior on the p;’s, either jointly or
independently, we would get a different answer for o3, p. We should. Such
a prior, by adding information about the values of the p;’s, would also add
information about the value of ¢2. This would be consistently reflected in
the MAP estimator.



