
Reconstructing the Full Internal State of a

Molecular Phylogenetic Tree with Arbitrary,

Branch-Dependent Substitution Probabilities

William H. Press

May 1, 2006

1 Introduction

This note is about how to get a full statistical reconstruction of the internal-node
state probabilities and the Markov transition matrices of a phylogenetic tree,
given only data at the leaf nodes (that is, data for extant taxa). Almost all of
this is standard textbook stuff—except that I can’t find any standard textbook,
or even paper in the literature, that gives a clear exposition in modern language.
While Reference [1] is a good starting point, it is too elementary. Reader, if you
know of a more advanced published treatment, or have written one, please let
me know!

By “modern” I of course mean Bayesian. The treatment here includes what is
commonly known as maximum likelihood (ML) reconstruction. The relationship
between ML and Bayesian methods is widely understood.

The data is taken to be a set of aligned positions in multiple genomes,
each position being a base pair, or possibly a codon labeled by its amino acid.
Missing data is allowed. In this note, we are given the topology and taxon
node assignment of the phylogenetic tree. That is, the whole vast machinery
of finding the correct tree is assumed already to have operated. Now, we only
want to reconstruct the internal details of the (assumed) Markov model.

We make the usual (simple) assumption that the Markov model acts iden-
tically and independently on each aligned position. That is, we here ignore the
possibility that substitution rates vary across the given set of nucleotide sites
(e.g., as a gamma distribution [2]) and concomitant pitfalls known to be possible
in such mixture models (see [3],[4]). However, there are several further common
specializations that we don’t make, instead treating the general case:

1. Our transition matrices (base substitution probabilities) can be different
on each edge of the tree.

2. No special form (e.g., GTR, JC69, K80, F81, HKY85, T92, TN93) is
assumed for the transition matrices.

1

3. The transition matrices need not be generated by an infinitesimal gener-
ator, nor have positive eigenvalues, nor have matrix logarithms.

2 Notation and the Example Tree

Let us try not to get bogged down in a notational morass. Nodes are labeled by
uppercase roman letters. Figure 1 shows the example tree that we use through-
out this note. When we refer to nodes O, E, F, I, J, K, L, X, Y, or Z, it is
understood that we mean nodes related as in the figure. The number of leaf
nodes is denoted M , so that there are M − 1 internal nodes (including the root
node) and 2M − 2 edges or branches. The number of aligned positions, that is,
the number of separate copies of the tree implied by the data set, is denoted N .

E F

O

I

J

LK

X

ZY

typical leaf nodes

typical

internal node

root node

Figure 1: Example tree used throughout this note. O denotes the root node. Y
and Z are typical leaf nodes. J is the typical internal node.

By specific assignment, we mean a tree that has every node labeled with a
specific value, for example, A, C, G, or T for aligned nucleotide positions, or one
of 20 amino acids for aligned codons. We use lowercase italic letters to denote
the variable that holds the assignment: b is the value at node B, etc. When the
value at a leaf node is known from the data, we put a hat over it, so ŷ means
the specific value measured (for one aligned position) at node Y.

We refer to edges (also called branches) by pairs of roman letters, e.g., OE,
OF, IJ, JK, JL, XY, YZ. We always label edges from their rootward to their

2

leafward nodes.
Transition matrices are labeled by their node, so, for example, AJK is the

transition matrix from node J to node K. The components of this matrix are
then written as AJK

jk . These components satisfy the condition for a stochastic
(i.e., Markov) matrix, ∑

k

AJK
jk = 1 (1)

that is, every row sums to unity.
Finally, we adopt a modified Einstein summation convention: Subscript in-

dices are taken to be summed over if they are underlined. So, for example,

AIJ
ijA

JK
jk AJL

jl ≡
∑

j

AIJ
ijA

JK
jk AJL

jl (2)

and
AIJ

ij AJK
jk AKM

km ≡
∑
j,k

AIJ
ijA

JK
jk AKM

km (3)

The range of each sum is 0, . . . , 3 (for a data set of aligned nucleotides) or
0, . . . , 19 (for a data set of aligned amino acids).

Figure 2 shows the example tree, but now labeled by the value at each node,
and the transition matrix on each edge.

E F

O

I

J

LK

X

ZY

A
OF

AOE

oe

o

fe

i

j

lk

x

zy

A
IJ

AJLAJK

A
XZ

A
XY

of

ij

jljk

xzxy

Figure 2: The example tree is here labeled by the assignment of values to nodes
(lowercase Italic letters) and by the transition matrices.

3

3 The Bayesian Setup

Consider a single aligned position, and let D be the observed leaf-node data, D =
{. . . , ŷ, ẑ, . . .}. Let A denote all the transition matrices, A = {AOE,AOF, . . . ,AXZ, . . .}.
Let T denote a particular labeling of the tree, that is, a vector of particular val-
ues T = {o, e, f, . . . , i, j, k, l, . . . , x, y, z, . . .}.

Given A and D, what is the probability of a particular labeling T ? Bayes’
rule gives,

p(T |D, A) =
p(D|T, A)p(T |A)∑

T ′ p(D|T ′, A)p(T ′|A)
(4)

Here p(T |A) is the (prior) probability of the labeling T , before we see any data
but given the complete model A. The sum over T ′ is shorthand for a sum over
2M − 1 individual indices, one for each node in the tree.

Now observe that p(D|T, A), the probability of the observed data given a
complete labeling of the tree, doesn’t depend on A and is in fact trivial: If the
data D is consistent with the labeling T it is unity, because the nodes in D are
a subset of the nodes in T ; otherwise it is zero:

p(D|T, A) = ΔDT ≡ · · · δyŷδzẑ . . . (product over leaf nodes) (5)

If there are missing data (e.g., ŷ is not known), then the corresponding delta
functions are omitted (e.g., δyŷ). In either case, we have,

p(T |D, A) =
ΔDT p(T |A)∑

T ′ ΔDT ′ p(T ′|A)
(6)

The denominator in equations (4) and (6) is important not just as a normalizing
factor, but also (we are about to see) in its own right. It is usually called the
“total likelihood of the data,”

L(D|A) ≡
∑
T

ΔDT p(T |A) (7)

Now we are ready to use the information from many different alignment
positions, indexed by ν = 1, . . . , N , to estimate the transition matrices A. In
other words, we have not just one D, but an N -vector D of data sets Dν , where
N is the number of aligned positions. Since the positions are assumed to be
independent, the overall probability is a product,

p(A|D) =
∏
ν

P (A|Dν)

∝
∏
ν

P (Dν |A)π(A)

∝ π(A)
∏
ν

∑
T ′

p(D|T ′, A)p(T ′|A)

∝ π(A)
∏
ν

L(Dν |A)

(8)

4

Here, the second line uses Bayes’ rule, while the third uses the law of total
probability. Because we will only be interested in the relative probabilities of
different models A, we can ignore the (implicit) denominators and use propor-
tionality signs. The quantity π(A) is the prior on the set of transition matrices.
We will take it to be the non-informative (flat) prior,

π(A) = 1 (flat prior) (9)

but it could be used to impose a priori conditions on A, such as the special
forms about which we were so dismissive in the introduction, above. One could
also use the prior π(A) as a regularization parameter, for example favoring A’s
that are closer to the identity matrix, a kind of parsimony.

When we assume equation (9), we might as well also redefine p(A|D) so as
to turn the final proportionality sign in equation (8) into an equality,

p(A|D) =
∏
ν

L(Dν |A) (10)

We need only keep in mind that, hereafter, p(A|D) is always a relative prob-
ability, with an unknown normalizing constant. In fact, since we never need
integrate over all A’s, the issue never arises.

Up to this point everything is general for a setup that has N copies of an
“object”, each with state labeled by T , of which a subset D is measured. The
copies share a common set of model parameters A.

4 Calculating the Various Probabilities

Going beyond the general setup, we now want to use properties that are specific
to our “objects” being trees, as in Figure 2.

The fundamental thing we need to calculate is p(T |A) (cf. equations 6 and
7). As remarked, this is a prior, because it doesn’t depend on the data D. Since
specifying T is equivalent to specifying its nodes {o, e, f, . . . , i, j, k, l, . . . , x, y, z, . . .},
p(T |A) depends both on our priors for the node values, πO

o , πE
e , . . . , πZ

z , . . ., and
also on the probabilities associated by A to the implied transitions. In other
words, a tree can be unlikely either because its node labels are themselves un-
likely, or because the transitions between them have low probability. We thus
have

p(T |A) = πO
o AOE

oe πE
e AOF

of πF
f · · ·AIJ

ijπ
J
j AJK

jk πK
k AJL

jl πL
l · · ·AXY

xy πY
y AXZ

xz πZ
z · · · (11)

Note that there are no sums in this expression, and that there is exactly one
factor for each edge and each node in the tree.

Equation (6) tells us that the relative probabilities of all trees, now given the
data, have just the same form as equation (11), if we just restrict the indices to
agree with the observed data (thus imposing the factor ΔDT). In practice, we

5

rarely have any informative prior information about non-observed node proba-
bilities like πK

k , so we can set these to unity, proportional to the noninformative
constant prior. However, we may well have useful priors on leaf notes, e.g.,
πY

y , πZ
z , since we may know their distribution over many base pairs.

Making this simplification, we now renormalize the result with denominator
L(D|A), because the sum of the (restricted) terms is no longer unity.

p(T |D, A) = πO
o AOE

oe AOF
of · · ·AIJ

ijA
JK
jk AJL

jl · · ·AXY
xŷ AXZ

xẑ πY
y πZ

z · · ·
/
L(D|A) (12)

The denominator L(D|A) is the sum of the numerators over all allowed T ’s
(equation 7). We do the sum, by summing over all internal nodes,

L(D|A) = πO
o AOE

oe AOF
of · · ·AIJ

ij AJK
jk AJL

jl · · ·AXY
xŷ AXZ

xẑ πY
ŷ πZ

ẑ · · · (13)

All non-leaf indices are summed over, as well as any leaf indices with missing
data.

A practical issue is that the number of terms in the sum is exponentially
large (4 or 20 the the power M − 1, the number of internal nodes). Luck-
ily, as discovered by Felsenstein[7], there is an efficient recursive way to do the
sums, exactly analogous to the forward-backward algorithm for evaluating hid-
den Markov models in time (see [5], [6] for reviews of HMMs). Focus attention
on a typical node, J, and make the sum over its index j explicit. Also partition
factors into three groups: those that connect to J only through its parent node
I, and those that connect to J only through each of its daughter nodes K and L.
Each such group evaluates, doing its internal sums, to 4-vector (or 20-vector),
labeled by the single index j:

L(D|A) =
∑

j

(πO
o AOE

oe AOF
of · · ·AXY

xŷ AXZ
xẑ · · ·AIJ

ij) × (AJK
jk · · ·) × (AJL

jl · · ·)

≡
∑

j

dIJ
j uJK

j uJL
j

(14)

That is, we denote by dIJ
j the “down” vector of all (fully summed over) factors

that come down to node J through its parent I, and by uJK
j and uJL

j , respectively,
the “up” vectors that come through J’s daughter nodes K and L. Every edge
has both an up vector and a down vector.

An additional special case for a down vector is

d·Oo ≡ πO
0 (15)

which is to be regarded as the down vector from the (non-existent) parent of
node O. At node O we then have

L(D|A) =
∑

o

d·Oo uOE
o uOF

o (16)

entirely analogous to equation (14).

6

It should be immediately apparent that the up vectors have a simple re-
currence, working from the bottom of the tree upwards (see Figure 3). The
recurrence starts with leaf nodes, for which

uXY
x = AXY

xŷ πY
ŷ (17)

when ŷ is known (usual case) or

uXY
x = AXY

xy πY
y (note the sum) (18)

if ŷ is missing data (because, in this case, there is no factor δyŷ restricting the
sum over all T). Now, for all internal nodes,

uIJ
i = AIJ

ij uJK
j uJL

j (19)

which is a single sum over 4 (or 20) terms. This is the analog of the “forward
pass” in the HMM forward-backward algorithm.

E F

O

I

J

LK

X

ZY

u
OFuOEo

o

fe

i

j

lk

x

zy

uIJ

uJLuJK

uXZu
XY

o

i

jj

xx

Figure 3: Recursive calculation of the “up vectors” u.

Recursing our way up the tree in this manner, and then evaluating equation
(16), we obtain L(D|A). This is the original Felsenstein (1981) [7] “pruning
method”.

At this point, we could declare victory: Using equations (16) and (10), we
can efficiently calculate p(A|D) for any model A. If A is expressed in a pa-
rameterized form, we could use standard techniques to maximize A over those
parameters, obtaining the maximum likelihood (ML) estimate. We would not,

7

however, be in a position to find the probability distribution of labels (nu-
cleotides or amino acids) on internal nodes, nor to find the best reconstruction
of the tree for any single position. To do that, we need not just a forward
pass, but also a backward pass, as we now describe. Also, we will be able to
use the powerful machinery of Bayesian re-estimation (or, nearly equivalently,
the estimation-maximization (EM) method) instead of, or in addition to, the
standard maximization techniques.

d
 OF

d OE

e

o

fe

i

j

lk

x

zy

d
 IJ

d
 JL

d JK

d XZd XY

f

j

lk

zy

E F

O

I

J

LK

X

ZY

o

Figure 4: Recursive calculation of the “down vectors” d. Not shown is that the
up vectors are also needed in the recurrence.

5 Downward Recurrence, Node and Node-Pair
Probabilities

Starting at the root of the tree with equation (15), we can compute the down
vectors on all tree edges. We couldn’t have done this before computing all the
up vectors, however, because the up vectors enter into the recurrence:

dJL
l = dIJ

j uJK
j AJL

jl (20)

a single sum over j. This is the analog of the HMM “backward pass”.

8

What does this get us? Not very usefully, we can now compute the same,
redundant value L(D|A) at every node, using equation (14). Much more useful
is to compute the probability distribution of labels at a single internal node I.
Since this is just a marginal over the original joint distribution of equation (12),
we can immediately write (see Figure 5 for the node topology),

p(i|D, A) = dHI
i uIM

i uIJ
i /L(D|A) (No sum!) (21)

for an interior node, or

p(ẑ|D, A) = dXZ
ẑ πZ

ẑ /L(D|A) = 1 (No sum!) (22)

for a measured leaf node, or

p(z|D, A) = dXZ
z πZ

z /L(D|A) (No sum!) (23)

for a leaf node with missing data.

I

J

LK

H

M

d
 HI

i

u
JL

u
JK

jj

u
IM

i

A
IJ

ijI

J

H

M

d
 HI

i

u
IJ

iu
IM

i

(a) (b)

Figure 5: Calculation of (a) the probability distribution at an internal node I,
or (b) the joint distribution at two nodes I and J.

In like manner, the joint distribution of two adjacent nodes I and J is the
marginal that sums over all internal indices except i and j,

p(i, j|D, A) = dHI
i uIM

i AIJ
iju

JK
j uJL

j /L(D|A) (No sums!) (24)

with special cases for leaf nodes analogous to those of equation (21).
Note that equations (21) and (24) are the distributions for a single tree,

corresponding to a single aligned position. If we want the sample distributions
at a single node i or pair i, j over the whole set of positions, we repeat the

9

calculations N times, using the data for each position, and then average the
individual probabilities,

p(i|D, A) =
1
N

N∑
ν=1

p(i|Dν, A), p(i, j|D, A) =
1
N

N∑
ν=1

p(i, j|Dν , A) (25)

If we want the expected number of times that the value i in the sample at a
specific node (or the values i, j at a specific node pair), then just omit the factor
1/N ,

E(#[i]) =
N∑

ν=1

p(i|Dν , A), E(#[i, j]) =
N∑

ν=1

p(i, j|Dν, A) (26)

Had we declared victory, as was suggested, at the end of §4, there might still
be some utility in doing the downward pass of this section. The reason is that
the entire dependence of L(D|A) on AIJ

ij can be isolated in the form

L(D|A) = dHI
i uIM

i AIJ
iju

JK
j uJL

j (27)

As noted by Schadt et al. [8], this gives an easy way to compute the partial
derivatives of P (A|D) with respect to every component AIJ

ij , which is required
by some (e.g., conjugate gradient and quasi-Newton) maximization methods.
The routine dfpmin in [9] is a good example. On the other hand, there are
other maximization methods that don’t need derivatives, for example direction
set methods such as powell in [9].

6 Bayesian Re-estimation or EM Iteration

The more powerful use of equation (26) is to re-estimate all the transition ma-
trices, exactly analogous to Baum-Welch re-estimation for HMMs. Since, by
definition AIJ

ij is the number of times that we see an i → j transition per occur-
rence of i, we immediately have,

ÂIJ
ij =

∑
ν p(i, j|Dν , A)∑
ν p(i|Dν , A)

(28)

Just like Baum-Welch, equation (28) can be viewed as either an improved
posterior estimate of AIJ

ij , or as one step in an EM (expectation-maximization)
[10] iteration to maximize P (A|D) over A. From either perspective, it can
be proved that P (A|D) (equation 10) is increased by the iteration, and that
multiple steps will converge to a (local) maximum of P (A|D). In the context
of phylogenetic trees, the earliest use of this re-estimation in the general model
seems to be Barry and Hartigan (1987) [11], although Felsenstein’s original
paper [7] gives EM re-estimation formulas for edge lengths alone, using a simple
model for A.

While it is easy to accept equation (28) on plausibility grounds, let us actu-
ally prove that the re-estimation increases P (A|D). (While the proof is analo-
gous to both EM and Baum-Welch proofs, there are enough small differences to

10

make it worth writing down explicitly.) First, we write P (A|D) as a sum over
not just all possible labeling of a single tree, but all possible labelings of all N
trees:

P (A|D) =
∏
ν

L(Dν |A) (equation 10)

=
∏
ν

∑
Tν

p(Tν |Dν , A)

=
∑
T∗

∏
ν

p(Tν |Dν , A)

≡
∑
T∗

p(T∗|D, A)

(29)

Here Tν is shorthand for M −1 indices that correspond to internal nodes in tree
ν (that is, the ΔDT factor has already been applied), while T∗ is shorthand for
the N(M −1) indices that correspond to all internal nodes in all the trees. The
probability p(T∗|D, A) is thus the probability of a particular full internal-node
labeling of all N trees.

Now define an auxiliary function Q(A, A) by

Q(A, A) ≡
∑
T∗

p(T∗|D, A) ln
[
p(T∗|D, A)

]
(30)

(The bar over the A in A is not a summation convention. It’s just a bar!)
We show that an increase in Q obtained by adjusting its second argument, A,
implies at least as large an increase in p(A|D):

Q(A, A) − Q(A, A) =
∑
T∗

p(T∗|D, A) ln
[
p(T∗|D, A)
p(T∗|D, A)

]

≤
∑
T∗

p(T∗|D, A)
[
p(T∗|D, A)
p(T∗|D, A)

− 1
]

= P (A|D) − P (A|D)

(31)

The inequality ln(x) ≤ x − 1, with equality holding only for x = 1, has been
used.

The use of equation (31) that gives the biggest guaranteed increase in P (A|D)
is—if we can do it—to jump to the maximum over A of Q(A, A). Since A is
a stochastic matrix, we must impose its row-sum conditions, equation (1), by
Lagrange multipliers, one for each row. (To simplify the notation, we write Aij

11

for AIJ
ij .)

0 =
∂

∂Aij

[
Q(A, A) + λiAij

]
=

∂

∂Aij

[∑
T∗

p(T∗|D, A)
∑

ν

ln p(Tν |Dν , A) + λiAij

]

=

[∑
ν

∂

∂Aij

∑
T∗

p(T∗|D, A) ln p(Tν |Dν , A)

]
+ λi

=

[∑
ν

∂

∂Aij

∑
T∗

p(T∗|D, A)(· · · + lnAij + · · ·)
]

+ λi

(32)

In the last line we have indicated that, if we write out ln p(Tν |Dν , A), there is
exactly one additive term, as shown, that depends on the particular component
Aij . Not so easy to indicate notationally is that, because the sum over ν has been
moved out, that particular i, j pair specializes the indices in T∗ that correspond
to only one of the N sets of M − 1 indices for which T∗ is shorthand. All the
other N − 1 sets of indices can be moved rightward to sum their respective
terms, giving

0 =

⎧⎨⎩∑
ν

⎡⎣ ∑
Tν �=i,j

p(Tν |Dν , A)

⎤⎦ ⎡⎣∏
μ�=ν

L(Dμ|A)

⎤⎦ 1
Aij

⎫⎬⎭ + λi

=

{
1

Aij

∑
ν

p(i, j|Dν, A)

}
+

λi

p(A|D)

(33)

where in the second line we have divided by P (A|D) (using equation 10). We can
now solve equation (33) for Aij . When the λi’s are set to impose the conditions
on row sums, the denominator in equation (28) automatically appears, and the
result is exactly equation (28).

We should note in passing that maximizing P (A|D) is not the only game in
town: One may wish to explore the space of posterior estimates of A by Markov
Chain Monte Carlo (MCMC) methods applied to P (A|D), yielding not just
maximum values, but also uncertainties, Bayes-factor model comparisons, and
so forth (see, e.g., [12], [13]). In such a case initial maximization by repeated re-
estimation can be used to generate a starting point that minimizes subsequent
burn-in time.

7 Branch Lengths

The most natural measures of branch length in the context of the general model
used in this note are the logdet distance and the related paralinear distance (see,
e.g., [14], [15]). We can define these in terms of posterior (or ML) estimates of

12

AIJ and of the posterior distribution of states at nodes I and J, denoted f I
i and

fJ
j by

dIJ
LD ≡ − 1

4 ln det(AIJ) (34)

and
dIJ

PL ≡ − 1
4 ln det

[
diag(f I)1/2 AIJ diag(fJ)−1/2

]
(35)

(Our definition of dLD is slightly nonstandard, but our definition of dPL is equiv-
alent to the standard definition in terms of the data matrix JIJ = diag(f I)AIJ.)
Evidently these two distances are related by

dIJ
PL = dIJ

LD − 1
8

∑
k

ln
f I

k

fJ
k

(36)

Both distance measures are positive. Paralinear distance is additive over the
tree (even over a path that goes up, then down), and is always directly related
to the data matrix between the two ends of the path. The data matrix over a
path is defined as the joint probability of seeing nucleotide i at one end of the
path and j at the other end, its 16 components adding up to unity.

We now assume, for the first time, that the matrix AIJ can be generated by
an infinitesimal generator GIJ, that is,

AIJ = exp(μGIJ) (37)

with G having zero row sums, zero or negative diagonal and zero or positive
off-diagonal elements. Since G can absorb any constant factor from μ, it needs
a normalization convention. A convenient one is

tr(G) = −4 (38)

Then μ will be the evolutionary distance measured in mean changes per site from
a hypothetical uniform nucleotide distribution. Characterizing the conditions
under which such a generator exists is known as the “embedding problem,” and
goes back to 1937. A sufficient (and usual) case is that A is diagonalizable and
has positive eigenvalues. See [16] for a review.

Since for any matrix
ln[det(A)] = tr[ln(A)] (39)

(if the quantities exist), we have

dLD = μ = − 1
4 ln det(A) (40)

and
G =

1
μ

ln(A) (41)

So individual branch lengths and individual generators are immediately available
from the posterior estimate of AIJ, if the generator exists.

If we want branch lengths conditioned on the assumption that the generators
are identical on some or all branches, then we can iterate as follows:

13

1. Re-estimate AIJ on all branches.

2. From each AIJ, compute μIJ and GIJ, using equations (40) and (41).

3. Average the GIJ’s obtained for different branches to get a consensus gen-
erator G.

4. Replace each AIJ by exp(μIJG).

5. Repeat steps 1–4 to convergence.

6. Compute the branch length dIJ
PL by equation (36).

References

[1] Felsenstein, J. (2004) Inferring Phylogenies (Sunderland, MA: Sinauer As-
sociates).

[2] Yang, Z. (1994) “Maximum Likelihood Phylogenetic Estimation from DNA
Sequences with Variable Rates over Sites: Approximate Methods,” J. Mol.
Evol., 39, 306–314.

[3] Stefankovic, D., and Vigoda, E. (2006) “Pitfalls of Varying Substitu-
tion Rates for Phylogenetic Reconstruction,” preprint at http://www-
static.cc.gatech.edu/˜vigoda/StefVig.pdf

[4] Mossel, E., and Vigoda, E. (2005) “Phylogenetic MCMC Algorithms Are
Misleading on Mixtures of Trees,” Science, 309, 2207-2209.

[5] Poritz, A.B. (1988) “Hidden Markov Models: A Guided Tour,” in Proc.
IEEE International Conference on Acoustics, Speech, and Signal Process-
ing [ICASSP-88] (New York: IEEE Press), vol. 1, pp. 7–13. Online at
http://ieeexplore.ieee.org/ xpls/abs all.jsp?arnumber=196495

[6] Rabiner, L.R. (1989) “A Tutorial on Hidden Markov Models and Selected
Applications to Speech Recognition,” Proc. IEEE, 77, 257–286.

[7] Felsenstein, J. (1981) “Evolutionary Trees from DNA Sequences: A Maxi-
mum Likelihood Approach,” J. Mol. Evol., 17, 368–376.

[8] Schadt, E.E., Sinsheimer, J.S., and Lange, K. (1998) “Computational
Advances in Maximum Likelihood Methods for Molecular Phylogeny,”
Genome Research, 8, 222-233.

[9] Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. (2002)
Numerical Recipes in C++, 2nd ed. (New York: Cambridge University
Press).

[10] Dempster, A., Laird, N., and Rubin, D. (1977) “Maximum likelihood from
incomplete data via the EM algorithm,” J. Roy. Stat. Soc., Series B, 39,
1–38.

14

[11] Barry, D., and Hartigan, J.A. (1987) “Statistical Analysis of Hominoid
Molecular Evolution,” Statistical Sci., 2, 191–210.

[12] Tierney, L. (1994) “Markov Chains for Exploring Posterior Distributions,”
Ann. Stat., 22, 1701–1762.

[13] Suchard, M.A., Weiss, R.E., and Sinsheimer, J.S. (2001) “Bayesian Selec-
tion of Continuous-Time Markov Chain Evolutionary Models,” Mol. Biol.
Evol., 18, 1001–1013.

[14] Lake, J.A. (1994) “Reconstructing Evolutionary Trees from DNA and Pro-
tein Sequences: Paralinear Distances,” PNAS, 91, 1455–1459.

[15] Gu, X., and Li, W-H (1996) “Bias-Corrected Paralinear and LogDet Dis-
tances and Tests of Molecular Clocks and Phylogenies under Nonstationary
Nucleotide Frequences,” Mol. Biol. Evol., 13, 1375–1383.

[16] Israel, R.B., Rosenthal, J.S., and Wei, J.Z. (2001) “Finding Generators
for Markov Chains via Empirical Transition Matrices, with Applications to
Credit Ratings,” Mathematical Finance, 11, 245–265.

15

