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Many, though not all, common distributions look sort-of like this:

Suppose we want to summarize p(x) by a single number 
a, its “center”.  Let’s find the value a that minimizes the 
mean-square distance of the “typical” value x:

We already saw the beta distribution with α, β > 0 as an example 
on the interval [0,1].  We’ll see more examples soon.
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expectation notation:
hanythingi ≡

R
x
(anything) p(x)dx

expectation is linear, etc.

This is the variance Var(x), 
but all we care about here is 
that it doesn’t depend on a.

The minimum is obviously a = hxi. (Take derivative
wrt a and set to zero if you like mechanical calcula-
tions.)

minimize: ∆2 ≡

(x− a)2

®
=

x2 − 2ax+ a2

®
= (

x2
®
− hxi2) + (hxi− a)2

(in physics this is called the “parallel axis theorem”)
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Higher moments, centered moments defined by

μi ≡

xi
®
=
R
xi p(x)dx

Mi ≡

(x− hxi)i

®
=
R
(x− hxi)i p(x)dx

But generally wise to be cautious about using high moments.
Otherwise perfectly good distributions don’t have them at all 
(divergent).  And (related) it can take a lot of data to measure 
them accurately. 

Third and fourth moments also have “names”

The centered second moment  M2 , the variance, is by far 
most useful
M2 ≡ Var(x) ≡


(x− hxi)2

®
=

x2
®
− hxi2

σ(x) ≡
p
Var(x) “standard deviation” summarizes a distribution’s half-width 

(r.m.s. deviation from the mean)
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Certain combinations of higher moments are also additive.  These
are called semi-invariants.  

Mean and variance are additive over independent random variables:

note “bar” notation, equivalent to < >

Skew and kurtosis are dimensionless combinations of semi-invariants

A Gaussian has all of its semi-invariants higher than I2 equal to zero.
A Poisson distribution has all of its semi-invariants equal to its mean.
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This is a good time to review some standard (i.e., frequently occurring) distributions:

Normal (Gaussian): Cauchy (Lorentzian):

tails fall off “as fast as possible” tails fall off “as slowly as possible”
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Student:

“bell shaped” but you get to specify the power with 
which the tails fall off.  Normal and Cauchy are 
limiting cases.  (Also occurs in some statistical tests.)

we’ll see uses for “heavy-tailed” distributions later

note that σ is not (quite) the standard deviation!

“Student” was actually William Sealy Gosset (1876-1937), who spent 
his entire career at the Guinness brewery in Dublin, where he rose to 
become the company’s Master Brewer.
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Common distributions on positive real line:

Exponential:
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Lognormal:



IMPRS Summer School 2009, Prof. William H. Press 10

Gamma distribution:

• Gamma and Lognormal are both commonly used as convenient 2-
parameter fitting functions for “peak with tail” positive distributions.

• Both have parameters for peak location and width.
• Neither has a separate parameter for how the tail decays.

– Gamma: exponential decay
– Lognormal: long-tailed (exponential of square of log)
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Chi-square distribution (we’ll use this a lot!)

Has only one parameter ν that determines both peak location and width.
ν is often an integer, called “number of degrees of freedom” or “DF”

the independent variable is χ2, not χ

It’s actually just a special case of Gamma,
namely Gamma(ν/2,1/2)
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A deviate from                is called a t-value.

is exactly the distribution of the sum of the squares of ν t-values.

Let’s prove the case of ν=1:

pY (y) dy = 2pX(x) dx

So, pY (y) = y
−1/2pX(y1/2) = 1√

2πy
e−

1
2y

Why this will be important:  We will know the distribution of any “statistic”
that is the sum of a known number of t2-values.
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The characteristic function of a distribution is its 
Fourier transform.

φX(t) ≡
Z ∞
−∞

eitxpX(x)dx

(Statisticians often use notational convention that X is a random 
variable, x its value, pX(x) its distribution.)

φX(0) = 1

φ0X(0) =
Z
ixpX(x)dx = iμ

−φ00X(0) =
Z
x2pX(x)dx = σ2 + μ2

So, the coefficients of the Taylor series expansion of the 
characteristic function are the (uncentered) moments.

Characteristic function of a distribution
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let S = X + Y

pS(s) =

Z
pX(u)pY (s− u)du

φS(t) = φX(t)φY (t)

Addition of independent r.v.’s:

(Fourier convolution theorem.)

φaX(t) =

Z
eitxpaX(x)dx

=

Z
eitx

1

a
pX
³x
a

´
dx

=

Z
ei(at)(x/a)pX

³x
a

´ dx
a

= φX(at)

Scaling law for characteristic functions:

Scaling law for r.v.’s:

Properties of characteristic functions:
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φX(t) ≡
Z ∞
−∞

eitxpX(x)dx

Proof of convolution theorem:

Fourier transform pair
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What’s the characteristic function of a Gaussian? Tell Mathematica that sig is positive.  
Otherwise it gives “cases” when taking 
the square root of sig^2
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What’s the characteristic function of                         ?

Since we already proved that ν=1 is the 
distribution of a single t2-value, this proves that 
the general ν case is the sum of ν t2-values.
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Cauchy distribution has ill-defined mean and infinite variance, but it has a 
perfectly good characteristic function:

Matlab and Mathematica both sadly fails at computing the 
characteristic function of the Cauchy distribution, but you 
can use fancier methods* and get:

φCauchy(t) = e
iμt−σ|t|

note non-analytic at t=0

*If t>0, close the contour in the upper 1/2-plane with a big semi-circle, which adds nothing. So the 
integral is just the residue at the pole (x-μ)/σ=i, which gives exp(-σt). Similarly, close the contour in the 
lower 1/2-plane for t<0, giving exp(σt). So answer is exp(-|σt|).  The factor exp(iμt) comes from the 
change of x variable to x-μ.


