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1 Stationary Processes

Wiener reconstruction of a curve from one-dimensional stationary data y(;)
at a discrete set of points t;, ¢ = 1,2,...,n is treated in Press, Rybicki, &
Hewitt ([1992]; PRH) and Rybicki & Press ([1992]; RP). The basic results
as given in RP are

5. =SIS+N]ly (1)

for the reconstructed value [RP eq. (8)], and
o7 = (s.) — SIS+ N|7'S, (2)

for the variance about this value [RP eq. (9)], that is, 52 = ((s. —5x)2). The
notation is described in detail in RP, but briefly: y is the vector of measued
values; S and N are the correlation matrices of signal and noise; S, is the
correlation vector between the signal at the reconstructed point and the
measured points; and (s,2) is the variance of the signal at the reconstructed
point.

Using the above quantities, one can find the entire Wiener reconstruction
of the curve by evaluating eq. (1) for each value of ¢ in the desired range.
Furthermore, one obtains error estimates for the reconstruction from eq. (2).
These may be graphically presented as a “snake,” the region between the
two curves S, & 0.

2 Weakly Nonstationary Processes

It is also of interest to consider weakly nonstationary processes, for which the
mean is not well defined. As discussed in PRH and RP the revelant formulas
for this case can be derived by assuming that the correlation function has an



essentially infinite constant part. For the purpose of many numerical calcu-
lations, one can achieve this by simply adding a sufficiently large constant
to the correlation function and and then using eqgs. (1) and (2). However, it
is of some interest to have special formulas for this case in which the formal
limit has been taken analytically.

The detailed derivation is accomplished by first adding a finite constant
A to the correlation function; this is equivalent to making the replacements

S — S+ \EE”
S, — S.+)\E
(ss2) — (s +A (3)

where E is a vector of ones. The desired formulas are now obtained by
taking the limit A — oo.
After performing these operations, we find (see appendix) that formula
(1) becomes
5. =SI[S+N|"'(y —7E) +7 (4)
where
__ ET[S+N]'y
YT ETS+N|E
This is the result given in RP [RP eqgs. (19) and (20)].
However, the weakly nonstationary result corresponding to formula (2)
is not given in RP. It can be shown (see the appendix) that the desired
formula is

()

(ST + N7E 1)’
ET[S+ N]-'E

o7 = (s:%) = SIS+ N|7'S, + (6)
It is clear that the formulas (4-6) for the weakly nonstationary case must
be invariant to the substitutions (3) for any finite A, since such a substitution
cannot change the limit. (This can also be proved directly, but the proof is
lengthy.) In particular, one may choose A to be equal to —(s.2), so that,

S - -V
S, — -V,
(s.2) — 0 (7)

where V is the structure function matrix, etc. Then eqgs. (4)—(6) become

5. = —VI[-V+N|"'(y —9E) +¢ (8)



where

Y= ET[ V1 N|-E )
and
(V*T[—V +N|7E + 1)2
ET[-V +N]'E
Thus the calculation of the Wiener reconstruction for weakly nonstationary
processes can be done using only the structure function.

62=-VI-V4+N|I"'V, + (10)

A Appendix: Proof of Equations (4) and (6)

It is convenient here to define matrices A and C by C = A~! = S + N.
After making the substitutions (3) the quantities 5, and &2 become

5, = [ST + AET][C + AEET| 'y (11)

and

62 = [(s.3) + Al — [ST + AET][C + AEET|7![S, + \E] (12)
The quantity [C + AEET]~! can be expressed by means of the well-known
Woodbury formula

[CHAEET| ' =A— — 2> AEETA-—A-—9 _AEETA (13)
1+ Ag! T+ gt

where

g=(ETAE)™! (14)

is a scalar. Equation (13) can now be expanded to second order in the small
parameter A1 as follows:

[CH+AEET] ™' = Mo+ A" "M; + A 2My + ... (15)
where
My = A — gAEETA, M; = (—g)""'AEETA, i>1 (16)

We now expand the following quantity, which appears in the both formulas
(11) and (12),

[STHAET][CH+AEET]™! = (ETM;+STM)+ A (ETMy+STM,)+0(\72)
(17)



where we have use the results ET'My = ME = 0. Therefore as A — o0,
5. = (E"M + SIMo)y (18)
Substituting for M, using the definition of g, we find

5. = gETAy+STAy — ¢gSTAEE"y
= 7+STAy—-STAJE
SIA(y —yE) +7 (19)

which proves eq. (4).
Returning to eq. (17), we find that

[ST + AET][C + AEET]7![S, + AE] = A\(ETM, E) (20)
+ (ETMLE + ETM; S, + STMLE + STMS,) + O(A ™)

Substitution into eq. (12), we note that the term of order A\ cancels due to
E”M,E = 1. Thus, in the limit A — oo,

62 = (s,2)—STAS, +g—gETAS, — ¢STAE + STAEE'S,
(s:%) — STAS, + g(STAE — 1)? (21)

which proves eq. (6). [Note that to obtain this expression the expansion of
Eq. (15) was required to second order.]
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