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1 Introduction

The structure function of a random function can be determined in a manner

similar to that described in Press, Rybicki & Hewitt (1992) by constructing
a histogram of square differences of the measured continuum as a function
of time difference and fitting the resulting points with a power law or other

parameterized law. However, here we shall use methods based on Bayes
theorem that are better motivated and give estimates of the confidence of

the fits.
We first give a method for estimating parameters of the autocorrelation

function, rather than the structure function, since the formulas are simpler.
Then we present a similar method for structure functions that is indepen-

dent of the mean and dispersion of the process, which are frequently poorly
constrained by the data.

2 Autocorrelation Functions

Suppose we have a set of “data” fi, at times ti, i = 1, 2, . . . , N . We model
this data as the values of a Gaussian random process f(t) at these times,

that is, fi = f(ti). The statistical properties of the process are completely
determined by its mean f̄ and the autocorrelation matrix C with compo-

nents
Cij =

〈
(fi − f̄)(fj − f̄)

〉
(1)

We also assume that the data can be expressed as f(t) = s(t) + n(t), the
sum of a “signal” s(t) and “noise” n(t). We assume the noise to have zero
mean, so the means of the data and signal are equal f̄ = s̄. We shall assume

that the signal and noise are uncorrelated (this assumption can be relaxed, if
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necessary). Then the correlation matrix of the process can then be expressed

as the sum
C = Cs + Cn (2)

where Cs and Cn are, respectively, the signal and noise autocorrelation
matrices, the components of which are given by expressions analogous to

Eq. (1).
For convenience of notation, let us define yi = fi− f̄ to be the data with

process mean subtracted, and define the corresponding vector y. This may
be written

y = f − f̄E, (3)

where E is the vector all of whose elements are unity, Ei = 1.
Let us assume that the properties of the process can be defined by a

number of parameters, such as the process mean f̄ and other parameters
defining the correlation matrices. We write these parameters as the single

vector η. For fixed values of the parameters η, the probability of f is given
is the multivariate Gaussian,

P (f |η) = [det(2πC)]−1/2 exp

(
−1

2
yTC−1y

)
(4)

For parameter estimation, we need the probability of η given the data f .
This is related to the probability (4) by Bayes theorem,

P (η|f) =
P (f |η)P (η)

P (f)
(5)

For a given set of data the quantity P (f) is fixed, so the only unknown on

the right is the a priori probability P (η). We now assume, as usual, that
P (η) is slowly varying on the scales of interest of the estimation problem,

so that
P (η|f) ∝ P (f |η) (6)

The estimation problem is now solved by maximizing P (η|f) with respect

to the parameters η. From Eqs. (4) and (6), this is equivalent to maximizing
the log-likelihood function

L = −1

2
yTC−1y − 1

2
lndet C (7)

Equivalently, one can minimize the quantity

Q = yTC−1y + lndet C (8)
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Note that the first term of Q is just the usual χ2 of the data, so that we

can think of Q as a “corrected χ2,” where the correction is related to the
normalization of the Gaussian distribution function and to the use of Bayes

theorem (see, e.g., Rybicki & Kleyna (1994), Eq. [9]).
In general, the minimization of Q with respect to the parameters has

to be done numerically, but for some types of parameters it can be done

analytically.
For example, suppose we consider the correlation matrix that depends

on a number of parameters a, b, c, . . . such that a is a multiplicative factor,
that is,

C = aC0 (9)

where C0 is independent of a. An important case where this occurs is

when the signal correlation matrix to be fitted has an overall multiplicative
parameter and where the noise estimates are also uncertain to within a

multiplicative factor, perhaps due to uncertain observational effects; this
factor can be considered as a parameter to be fitted, along with the other
parameters of the correlation function of the signal. Then one can choose

one parameter of the total correlation matrix to be an overall factor as in
Eq. (9).

The above assumed form implies the simple scalings,

C−1 = a−1C−1
0 , detC = an detC0 (10)

so that
Q = a−1yTC−1

0 y + n lna + lndet C0 (11)

Thus the minimization with respect to a gives a = a0 where

a0 = yTC−1
0 y/n ≡ χ2

0/n (12)

This implies that the minimization of Q with respect to the other parameters

can be done by minimization of the reduced function

Q̂ = n− n lnn + n ln
(
yTC−1

0 y
)

+ ln detC0 (13)

which no longer contains a

Note that Eq. (12) implies that χ2 = a−1
0 χ2

0 = n, which is the correct
theoretical value for n degrees of freedom. This is easy to understand, since

it is the result of a maximum likelihood rescaling of the errors.
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3 Structure Functions

It occurs commonly that the underlying random process has strong corre-
lations on scales longer than the length of the data set. In this case, the

mean s̄ and the variance var(s) of the process are not well determined by
the data. It is useful therefore to derive an modified version of Q that is
independent of these two parameters. The resulting quantity Q̃ will then

depend solely on the structure function of the process, rather than the full
correlation function.

We begin by defining a reduced data set f̃ of length (n−1) by subtracting
the last component fn from each of the other components of f ,

f̃i = yi − yn = fi − fn, 1 ≤ i ≤ n − 1 (14)

This can be written as the matrix equation

f̃ = Bf (15)

where the (n− 1) × n matrix B is defined by

B = (Ĩ,−Ẽ) =

⎛
⎜⎜⎜⎝

1 0 . . . 0 −1

0 1 . . . 0 −1
...

...
. . .

...
...

0 0 . . . 1 −1

⎞
⎟⎟⎟⎠ (16)

Here Ĩ is the (n − 1) × (n − 1) unit matrix, and Ẽ is the (n − 1)-vector of

ones, Ẽ = (1, 1, . . . , 1)T [Generally the tilde will be used to denote (n− 1)-
dimensional versions of the corresponding n-dimensional quantities.]

Let us now find the probablity distribution of the reduced vector f̃ . This
can clearly be written,

Pn−1(f̃) =

∫
δ(n−1)(f̃ − Bf)Pn(f) d

nf , (17)

where δ(n−1) is an (n − 1)-dimensional delta function, and where Pn(f) is

the Gaussian distribution

Pn(f) = [det(2πC)]−1/2 exp

(
−1

2
fTC−1f

)
(18)

where C = Cs + Cn. A convenient characterization of this probability
distribution is through its Fourier transform, also known as its characteristic

function, which is easily shown to be∫
exp(ikT f)Pn(f) dnf = exp

(
−1

2
kTCk

)
(19)
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Applying the Fourier transform to Eq. (17) we find∫
exp(ik̃T f̃)Pn−1(f̃) d

n−1f̃ =

∫
exp(ik̃TBf)Pn(f) dnf = exp

(
−1

2
k̃TΓk̃

)
(20)

where
Γ = BCBT (21)

Thus, by inverse Fourier transformation,

Pn−1(f̃) = [det(2πΓ)]−1/2 exp

[
−1

2
f̃TΓ−1 f̃

]
(22)

Equation (22) shows that f̃ has a Gaussian distribution with (n − 1) ×
(n− 1) correlation matrix Γ. Thus, the appropriate modified expression for

Q is now
Q̃ = f̃TΓ−1f̃ + lndet Γ (23)

Note that the first term on the right is a modified chi-squared, given by

χ̃2 = f̃TΓ−1 f̃ = f̃T (BCBT )−1f̃ (24)

This can be rewritten in the schematic, but suggestive, form

χ̃2 = (fi − fn)T [Cij − Cin −Cnj + Cnn]−1(fj − fn) (25)

where the indices i and j run from 1 to n−1. From this expression, one can

immediately see that χ̃2 is invariant to the addition of the same arbitrary
constant to each component of the data, and thus it is independent of the

data mean f̄ . The matrix in brackets (a rewriting of BCBT ) is likewise
invariant to the addition of the same arbitrary constant to each element of

the correlation matrix C. This means that χ̃2 and Q̃ depend only on the
structure function of the data, since the relationship between the correlation
function C(τ) and the negative of the structure function −V (τ) differ only

by a constant: C(τ) − 〈(f − f̄ )2〉 = −V (τ). In particular, one can replace
the elements of the correlation matrix Cij by −Vij for 1 ≤ i, j ≤ n without

changing the values of either χ̃2 or Q̃. In this way Q̃ can be used to estimate
the parameters of the structure function directly without considering the

mean or variance of the data.
These properties of χ̃2 of being independent of data mean and variance

are shared by the quantity χ2
PRH introduced by Press, Rybicki, & Hewitt

(1992; Eq. [27]), namely,

χ2
PRH = yT Ây = yT

(
A− AEETA

ETAE

)
y. (26)
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where A = C−1. It is possible to show that these two chi-square expressions

are identical, that is,
χ̃2 ≡ χ2

PRH (27)

for any set of data. Using Eqs. (15) and (24) this relation can be written in
the form

yTBT (BCBT )−1By = yT

(
C−1 − C−1EETC−1

ETC−1E

)
y (28)

which implies that Eq. (27) can be true for all y if and only if

BT (BCBT )−1B = C−1 − C−1EETC−1

ETC−1E
(29)

We have proved this result, but our proof is quite lengthy and will not be
given here. The simplicity of this result suggests that a simple proof may

exist.
Since the definition of χ2

PRH treats all vector components on the same

footing, the relation (27) shows that the expression for χ̃2 must be indepen-
dent of the choice of which component of f to subtract from the others in

defining f̃ ; any other component could have been chosen in Eq. (14) instead
of the nth one without affecting the values of χ̃2.

It is also true that the determinant of Γ is independent of the choice of
which component of f to use in forming f̃ . We sketch the proof as follows.
First, let us intoduce some notation. As a generalization of Eq. (14), we now

define the vector f̃(k) by subtracting the kth component of the data from all
the others. The indices of all components with indices larger than k are then

reduced by one, so that the resulting indices cover the range 1 ≤ i ≤ n− 1.
This can be conveniently expressed by the generalization of Eq. (15),

f̃(k) = B̃(k)f (30)

Here the (n− 1) × n matrix B(k) is defined by

B(k) = (U(k−1),−Ẽ,L(n−k)) (31)

where U(k−1) is an (n− 1)× (k− 1) matrix consisting of a (k− 1)× (k− 1)
unit matrix on top of an (n − k) × (k − 1) zero matrix. Likewise L(n−k) is

an (n− 1)× (n− k) matrix consisting of an (k− 1)× (n− k) zero matrix on
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top of an (n− k) × (n− k) unit matrix. Note that B = B(n). The reduced

correlation matrix for the choice k is then

Γ(k) = B(k)CBT
(k) (32)

which is the appropriate generalization of the reduced correlation matrix
appearing in Eq. (22), for which Γ = Γ(n).

We now define T(k,l) to be an (n − 1) × (n − 1) matrix equal to B(k)

with its lth column deleted. Then we state without proof the following two

properties of T(k,l) for all k and l, 1 ≤ k, l ≤ n− 1,

B(k) = T(k,l)B(l); | detT(k,l)| = 1 (33)

Therefore
Γ(k) = T(k,l)B(l)CBT

(l)T
T
(k,l) = T(k,l)Γ(l)T

T
(k,l) (34)

and finally,
det Γ(k) = (det T(k.l))

2 detΓ(l) = det Γ(l) (35)

Thus Q̃ is independent of which component fk is subtracted from the others
in defining f̃ , and we may write simply

Q̃ = f̃T(k)Γ
−1
(k)f̃(k) + ln detΓ(k) (36)

In view of Eq. (26), it is interesting to ask if there is a simple expression
for Q̃ based on n× n matrices that treats all components alike. This would
involve finding an appropriate n× n expression for the determinant term in

Eq. (23) or (36). It should be pointed out det Â itself vanishes and is not
the desired quantity.

We conjecture that the desired relation is

det Γ(k) = (ETC−1E) detC, (37)

which has been checked numerically. In that case we may write Q̃ in the

form
Q̃ = yT Ây + ln detC + ln(ETC−1E) (38)

which is invariant to y → y + λE and C → C + µEET .
We note that the method for finding the minimum with respect to an

overall multiplicative factor will also work for the case of a structure function
with overall multiplicative factor, providing that we use the reduced matrices
given in this section.
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