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Consider the linear equation

(Φ + N)x = y, (1)

which plays an important role in the fast methods proposed by Rybicki and
Press (1995; hereafter RH). Here x and y are n-vectors,and N is the n × n
diagonal “noise” matrix, with components

Nij = Niδij, (2)

and Φ is the n× n correlation matrix of the “signal”, with components

Φij = Φ(ti, tj) = 〈s(ti)s(tj)〉. (3)

For convenience, the times ti, i = 1, 2, . . . , n are assumed to be given in (or
sorted into) non-decreasing order, t1 ≤ t2 ≤ . . . ≤ tn. The object is to solve
for the unknown x for a given y

A problem arises in solving Eq. (1) when some of the times ti are dupli-
cated. Although the inverse (Φ+N)−1 can still exist, providing the elements
of N are nonzero, the inverse T = Φ−1 does not exist, and the formal solu-
tion x = T(1 + NT)−1y, suggested in RH, cannot be used to effect a fast
solution.

The purpose of this note is to show how to solve Eq. (1) by reducing it to
one of the same form, but one of lower dimensionality in which all duplicate
times are eliminated. This reduction works for matrices Φ of the general
form (3), not just for the exponential matrices treated by RH.
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1 The Reduction

There can be a number of sets of duplicated times, each with its own multi-
plicity. Let us concentrate on one such set consisting of m duplicated times,
say, tk = tk+1 = . . . = tk+m−1. Then the m rows k, k + 1, . . . , k +m− 1 of Φ
are identical, and so are the corresponding m columns (this shows that Φ is
singular).

Eq. (1) can now be substantially simplified by use of simple row and
column operations. Subtracting the kth row from rows k+1 through k+m−1,
all elements of (Φ + N) in these rows are eliminated, except for the kth
through k + m − 1st columns. Other rows of the matrix are not affected.
Rows k + 1 through k +m− 1 of the right hand side are changed from yi to
yi − yk.

A similar set of column operations can be effected by replacing the vari-
able xk by the new variable

x̄k = xk + xk+1 + . . . + xk+m−1, (4)

keeping all other variables the same. This eliminates all elements of the
matrix in columns k + 1 through k + m − 1, except for rows k through
k + m− 1. Other columns are not affected, nor is the right hand side.

The effect of these operations is to partially decouple the system, so
that the set of variables outside the range k to k + m − 1 couple only with
themselves and with x̄k. The main coupling to be resolved is between the
new variable x̄k and the set of variables xk+1 through xk+m−1. The relevant
set of equations consists of the system

Fk+1xk+1 +Nkxk+2 + . . . +Nkxk+m−1 = Nkx̄k + yk+1 − yk
Nkxk+1 +Fk+2xk+2 + . . . +Nkxk+m−1 = Nkx̄k + yk+2 − yk

...
...

. . .
... =

...
Nkxk+1 +Nkxk+2 + . . . +Fk+m−1xk+m−1 = Nkx̄k + yk+m−1 − yk,

(5)
where Fl = Nk + Nl, plus the single equation

. . . + (Φkk + Nk)x̄k −Nkxk+1 . . .−Nkxk+m−1 + . . . = yk. (6)

The dots here refer to terms containing unknowns other than x̄k and xk+1

through xk+m−1. The system (4) and Eq. (5) can be solved for the variables
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xl in terms of x̄k and the quantities yl and Nl for k ≤ l ≤ k+m−1. Defining
the quantities N̄k and ȳk by

N̄−1
k =

k+m−1∑
l=k

N−1
l

N̄−1
k ȳk =

k+m−1∑
l=k

N−1
l yl, (7)

the result can be expressed in the simple form

xl = (N̄kx̄k + yl − ȳk)/Nl, k ≤ l ≤ k + m− 1. (8)

Using this equation, we can eliminate variables xk+1 through xk+m−1 from
Eq. (6), and we obtain

. . . + (Φkk + N̄k)x̄k + . . . = ȳk. (9)

We note that Eq. (9) plus all the other equations in rows outside the
range k to k + m − 1 form a system of n − m + 1 equations of precisely
the original form without the duplicated times, except for the replacements
xk → x̄k, yk → ȳk, and Nk → N̄k. Once this system is solved, the original
variables xk through xk+m−1 can be determined by use of Eq. (8).

Since the altered system is of the same general form as the original, the
same reduction can be applied to it to eliminate a second set of duplicate
times, and a third, etc., until all duplicate times are eliminated. By relabel-
ing the variables, it is possible to use the same method to solve the reduced
system as is used to solve a system without duplicate times. Since the ad-
ditional manipulations implied in Eqs. (7) and (8) add at most only O(n)
operations, the reduction does not spoil any fast methods.

2 Further Developments

2.1 Determinants

For some statistical applications it is necessary to compute the determinant
of the matrix Φ + N. We show here how this can be done in terms of the
reduced problem. After a little consideration of the reduced problem, it can
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be seen that this determinant differs from that of the reduced problem by
the determinant of the (m− 1)× (m− 1) matrix Kk on the left hand side of
Eq. (5), that is,

det(Φ + N) = detKk det(Φ + N)reduced. (10)

The matrix Kk can be written

Kk = Dk + NkEET = (1 + NkEETD−1
k )Dk, (11)

where Dk is the (m− 1) × (m− 1) diagonal matrix (Dk)ij = Nk+j−1δij and
E is the column vector with unity elements Ei = 1. Using the general result
det(1 + AB) = det(1 + BA), valid for recangular matrices A and B for
which AB and BA are square, we obtain the final result

detKk = det(1 + NkE
TD−1

k E) detDk

=

⎛
⎝1 + Nk

k+m−1∑
l=k+1

N−1
l

⎞
⎠Nk+1Nk+2 · · ·Nk+m−1

= N̄−1
k

k+m−1∏
l=k

Nl. (12)

When there are several sets of duplicate times, the correction to the de-
terminant will be a product of determinants of the form (12), one for each
set.

In practice, it is more convenient to work with the logarithms of the
determinant, since these are less likely to cause overflow. Thus we write
Eq. (12) in the equivalent form

log detKk = − log N̄k +
k+m−1∑
l=k

logNl (13)

2.2 Evaluation of χ2

One of the important statistical uses of the fast methods is to calculate the
quantity χ2, defined by

χ2 = yT (Φ + N)−1y. (14)
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By Eq. (1) χ2 can be written simply

χ2 = yTx = xTy =
n∑

i=1

xiyi. (15)

The evaluation can be done straightforwardly by solving the system (1) by
the reduction method to get x. However, it is of some interest to see how
this χ2 relates to the reduced problem.

Let us now adopt the notation that the reduced problem is

(Φ̄ + N̄)x̄ = ȳ, (16)

which is of dimension n̄. The reduced quantity analogous to χ2 is

χ̄2 =
n̄∑

i=1

x̄iȳi. (17)

Let us assume that there is one set of duplicated times. Then χ2 and χ̄2

are related by

χ2 = χ̄2 +
k+m−1∑
l=k

xlyl. (18)

Using Eq. (8) to substitute for xl and with some manipulation, we obtain

χ2 = χ̄2 + χ2
k (19)

where

χ2
k =

k+m−1∑
l=k

N−1
l (yl − ȳk)

2. (20)

That is, the original χ2 is equal to the reduced χ̄2 plus a “local” contribution
χ2
k, due to the dispersion of the yl values about their local mean ȳk, inversely

weighted by the appropriate mean square noise values Nl. In general, there
will be a sum of local correction terms of this sort from each set of duplicated
times.

It is interesting to note that for Gaussian processes the expectation value
of χ̄2 is equal to the reduced number of variables, and it is the local con-
tributions that bring the expectation value of χ2 up to the full number of
variables n.
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2.3 Reduced Data Sets

The analysis of large data sets (i.e., with large dimension n) can be compu-
tationally expensive. It is therefore of considerable importance to find ways
to reduce the dimensionality of a data set, while retaining as much of its
essential information as possible.

In this subsection we consider how the preceding formulas can be used
to construct reduced data sets. We restrict the discussion to cases where the
data is to be used only for calculating χ2 and log det(Φ + N). For example,
these are the essential quantities in the method of Press, Rybicki and Hewitt
(1992a,b) for determining the time delay of gravitational lenses.

The reduction proposed here is based on the assumption that some of
the times ti associated with the data, while not strictly at duplicate times,
can be grouped into “clusters” having almost the same times. This might
occur, for example, if astronomical observations of an object are taken over
many years, but a number of the observations may have been taken within
relatively short intervals, short in comparison to the correlation time of the
signal. A reduced data set might be constructed which contains only one
representative observation from each night (or maybe each hour; or maybe
each week).

The question then arises, how best to characterize this reduced, repre-
sentative data. The formulas of the preceding subsections give the answer,
namely, for each group of times the new data set consists of the reduced
values ȳk and N̄k, defined by Eqs. (7), as well as the associated local contri-
bution χ2

k, defined by Eq. (20) and the local contribution to the logarithm
of the determinant, given by Eq. (13). This constitutes the desired reduced
data set.

This reduced data set is very much like the old one in structure, except
it now has the new quantities of local χ2 and log-determinant log detKk

attached to each point. We adopt the convention that the original set also had
such local quantities associated with each point, call them χ2

l and log detKl,
but they were all zero. Then we can rewrite Eq. (20) as

χ2
k =

k+m−1∑
l=k

N−1
l (yl − ȳk)

2 +
k+m−1∑
l=k

χ2
l (21)
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and Eq. (13) as

log detKk = − log N̄k +
k+m−1∑
l=k

logNl +
k+m−1∑
l=k

log detKl (22)

With this slight change, it can be shown that the reduction proceedure is
“associative,” that is, if one goes through a series of reductions of the data,
the result is independent of the intermediate stages and depends only on the
final time groupings. It is easy to see that this is true for the quantities ȳk
and N̄k, owing to the form of Eqs. (7). It is also true for the formulas (21)
and (22), but we shall not give the proof here.

Note that the reduction achieved here is not necessarily in the storage
requirement, since two extra quantities are now included per time. Of much
greater importance is the reduction in the number of independent times n,
since the computational times for the data analysis depend strongly on this.
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