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We discuss here the properties of a Gaussian random process x(t) of
a very special type, namely, one that has zero mean and the exponential

correlation function

Φ(τ) = 〈x(t)x(t+ τ)〉 = σ2 exp(−α|τ |) (1)

for time lag τ . The constants σ2 and α are, respectively, the variance and the
inverse correlation time of the process. (The quantity σ itself is the standard

deviation.) This process is known as the Ornstein-Uhlenbeck process. (ref.
?)

An interesting special case of this process is where α approaches zero,
while σ becomes infinite in such a way that ασ2 approaches a fixed constant.

We can accomplish this by letting

σ2 =
D

2α
(2)

where D is a constant, called the diffusivity. This limiting case is often

called the Gaussian random walk process. (ref. ?)
We note that the correlation function (1) of the random walk is not

defined, since σ → ∞ as α→ 0. However, the structure function, defined as

ψ(τ) = 〈[x(t) − x(t+ τ)]2〉 = 2[Φ(0)− Φ(τ)] = 2σ2[1 − exp(−α|τ |)] (3)

does have meaning in the limit, namely,

ψ(τ) = D|τ | (4)

This shows directly the meaning of D as a diffusivity. [Note that the struc-
ture function is often defined as V (τ) = (1/2)ψ(τ).]

1



1 Joint probability functions

Let ti, 1 ≤ i ≤ n be an ordered set of times, t1 < t2 < . . . < tn, and let xi =
x(ti) be the values of the process at those times. Then from the definition of

a Gaussian process, we know that the joint probability distribution function
of the set of values xi is

Pn(xn, . . . , x1) = [det(2πCn)]
−1/2 exp

(
−1

2
xTC−1

n x

)
(5)

where the n-dimensional vector x has components xi and the n × n matrix
Cn has components Cij = Φ(ti − tj). The superscript “T” indicates matrix

transposition.
It turns out (Rybicki & Press 1995) that the matrix Cn has a simple

inverse, namely, the tridiagonal matrix

Tn = C−1
n = σ−2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 −e1
−e1 d2 −e2

−e2 d3 −e3
. . .

. . .
. . .

−en−2 dn−1 −en−1

−en−1 dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6)

where the elements not indicated are zero. Defining

ri =

{
0, i = 0,
exp[−α(ti+1 − ti)], 1 ≤ i ≤ n − 1,

(7)

the quantities ei and di are given by

ei =

⎧⎨
⎩

0, i = 0,

ri/(1− r2i ), 1 ≤ i ≤ n− 1
0, i = n,

(8)

and
di = 1 + riei + ri−1ei−1, 1 ≤ i ≤ n. (9)

With the representation (6) for the inverse, the quadratic form appearing
in the exponent of Eq. (5) can be written,

Qn ≡ xTC−1
n x = σ−2

n∑
i=1

(dix
2
i + 2ei−1xixi−1) (10)
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Substituting for di gives

Qn = σ−2
n∑

i=1

[
(1 − ri−1ei−1)x

2
i + 2ei−1xixi−1

]
− σ−2

n∑
i=1

rieix
2
i

= σ−2
n∑

i=1

[
(1 − ri−1ei−1)x

2
i + 2ei−1xixi−1 − ri−1ei−1x

2
i−1

]
(11)

To get to the second form we have shifted the index in the second sum. Now

using the definitions for di and ei from Eqs. (8) and (9), we obtain

Qn = σ−2
n∑

i=1

(xi − ri−1xi−1)
2

1 − r2i−1

(12)

Therefore the joint probability distribution function Pn can be expressed

Pn(xn, . . . , x1) = [det(2πCn)]
−1/2 exp

(
−

n∑
i=1

(xi − ri−1xi−1)
2

2σ2(1 − r2i−1)

)
(13)

A special case is for n = 1, where r0 = 0 and

P1(x1) = (2πσ2)−1/2 exp

(
− x2

1

2σ2

)
(14)

2 Conditional probability functions

Conditional probabilities can be easily found from the above joint probability
distribution functions. These are useful for a number of reasons. First,

the joint distribution functions can be expressed simply in terms of them
(Markov property). Second, they can be used as the basis for constructing

fast data simulations via recursion. Third, they are necessary for discussion
of the random walk process, for which, as we shall see, the joint distribution
becomes singular.

We are particularly interested in finding the conditional distribution of
one of the n variables, say xm, keeping the others fixed. There are two

fairly distinct cases, depending on whether xm is an “endpoint”, i.e., either
m = 0 or m = n, or an “interior” point, i.e., 1 < m < n. We shall treat the

endpoint case first and then the interior point case.
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2.1 Endpoint case

We shall treat the endpoint case for a truncated set of times, namely,
t1, . . . , tm, where m ≤ n. It is sufficient to find the conditional distribu-

tion of xm given x1, . . . , xm−1, since the other endpoint cases are completely
analogous. This distribution is given by

Pm(xm|xm−1, . . . , x2, x1) =
Pm(xm, xm−1, . . . , x2, x1)

Pm−1(xm−1, xm−2, . . . , x2, x1)
(15)

Substituting the appropriate expressions for the joint probability distribu-

tion functions on the right (replacing n in Eq. (13) with m and m − 1), we
find that Pm(xm|xm−1, . . . , x2, x1) is given by

Pm(xm|xm−1) =

[
det(2πCm−1)

det(2πCm)

]1/2
exp

[
−(xm − rm−1xm−1)

2

2σ2(1− r2m−1)

]
(16)

Since the integral of the condition distribution over xm must be unity, we

may also write

Pm(xm|xm−1) =
1√

2πσ2(1− r2m−1)
exp

[
−(xm − rm−1xm−1)

2

2σ2(1− r2m−1)

]
(17)

One sees that this conditional probability is independent of the variables
xm−2, xm−3, . . ., x1, which is now reflected in our notation Pm(xm|xm−1).
This is an expression of the Markov property of the process, so that the

distribution of xm depends only on the immediately previous value xm−1.
From the conditional probability given by Eq. (17) it is clear that xm has

a Gaussian distribution with mean rm−1xm−1 and variance σ2(1 − r2m−1).
Thus, for small values of α(tm − tm−1), the mean will be close to the pre-

ceding value xm−1 with small variance, but for larger values there will be a
regression to the (zero) mean of the process, while the variance will become

close to the full variance σ2.
Another important deduction can be made from these equations. The

equality of the normalization factors in Eqs. (16) and (17) implies the rela-
tion

det Cm = σ2(1− r2m−1) detCm−1 (18)

Since det C1 = σ2, we have the general result

det Cm = σ2m
m−1∏
i=1

(1− r2i ) (19)
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As a consequence, Eq. (13) can be written

Pn(xn, . . . , x1) =
n∏

i=1

1√
2πσ2(1− r2i−1)

exp

[
−(xi − ri−1xi−1)

2

2σ2(1 − r2i−1)

]
(20)

or

Pn(xn, . . . , x1) = P1(x1)
n∏

i=2

Pi(xi|xi−1) (21)

Therefore the complete joint distribution function can be expressed simply

as a product of conditional distibution functions.

2.2 Interior point case

Another important type of conditional probability involves not an endpoint

value (like x1 or xn), but an interior value, say m. Then we desire

P (xm|xn, . . . , xm+1, xm−1, . . . , x1) =
P (xn, . . . , xm+1, xm, xm−1, . . . , x1)

P (xn, . . . , xm+1, xm−1, . . . , x1)
(22)

Using Eq. (21) the right hand side can be written

P (xn|xn−1)P (xn−1|xn−2) · · ·P (xm+1|xm)P (xm|xm−1) · · ·P (x2|x1)P (x1)

P (xn|xn−1)P (xn−1|xn−2) · · ·P (xm+1|xm−1) · · ·P (x2|x1)P (x1)
(23)

which, after cancellations, becomes simply

P (xm|xn, . . . , xm+1, xm−1, . . . , x1) =
P (xm+1|xm)P (xm|xm−1)

P (xm+1|xm−1)
(24)

We now wish to use Eq. (17) for the three conditional probabilities on
the right. However, first we must realize that the meaning of the quan-

tity P (xm+1|xm−1) is with respect to the values at tm+1 and tm−1 with no
intervening values. Therefore it is necessary to replace the value for rm in

Eq. (17) with rm−1rm = exp[−α(tm+1 − tm−1)] to obtain P (xm+1|xm−1).
With these substitutions,

P (xm|xn, . . . , xm+1, xm−1, . . . , x1) =

[
1− r2m−1r

2
m

2πσ2(1− r2m−1)(1− r2m)

]1/2

×

× exp

{
− 1

2πσ2

[
(xm+1 − rmxm)2

1 − r2m
+

(xm+ − rm−1xm−1)
2

1 − r2m−1

− (xm+1 − rm−1rmxm−1)
2

1 − r2m−1r
2
m

]}

(25)
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After lengthy, but straightforward, manipulations, this can be expressed,

P (xm|xm+1, xm−1) =
1√

2πσ̄2
exp

[
−(xm − x̄)2

2σ̄2

]
(26)

where

x̄ =
rm(1− r2m−1)xm+1 + rm−1(1 − r2m)xm−1

1 − r2m−1r
2
m

σ̄ = σ

[
(1 − r2m−1)(1− r2m)

1 − r2m−1r
2
m

]1/2

(27)

This “interior” conditional probability depends only on the neighboring val-

ues of the process, namely, xm+1 and xm−1, which is reflected in the notation
in Eq. (26). This is the appropriate expression of the Markov property for

an interior point. We note that x̄ approaches the values xm+1 or xm−1 as tm
approaches the corresponding tm+1 or tm−1, but there is also some regres-

sion to the (zero) mean of the process between these points. The variance
is zero at the boundary points but reaches a maximum between the points,
which may be close to the full variance σ2 if α(tm+1 − tm−1) is large.

3 Case of a Random Walk

The Gaussian random walk formulas can be derived from the preceding ones

by judicious use of the limit α → 0 while maintaining Eq. (2). This limit
yields

rm−1 → 1, σ2(1− r2m−1) → D(tm − tm−1) (28)

so by Eqs. (17) and (18) the conditional probability Pi(xm|xm−1, . . . , x2, x1)
becomes

Pm(xm|xm−1) =
1√

2πD(tm − tm−1)
exp

[
− (xm − xm−1)

2

2D(tm − tm−1)

]
(29)

Therefore, if the variables xm−1, . . ., x1 are known, then the variable xm is

a Gaussian deviate with mean xm−1 and variance D(tm − tm−1). Note that
there is no tendancy now for the mean to regress to the (zero) mean of the
process, since the succeeding values are all statistically centered on xm−1.

The fact that the standard deviation grows as the square root of the time
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difference (tm−tm−1) is described by saying that the process is a “diffusive”

process, with “diffusivity” D. This is often called the random walk process.
It is possible to find the analogous interior point formulas for the random

walk. We again have Eq. (26) but with

x̄ =
(tm+1 − tm)xm−1 + (tm − tm−1)xm+1

tm+1 − tm−1

σ̄ =
D(tm+1 − tm)(tm − tm−1)

tm+1 − tm−1
(30)

Thus the mean x̄ is given simply by linear interpolation between the bound-

ing values. [This also implies that the Wiener optimum interpolation for a
noise-free random walk is simple linear interpolation.]

4 Fast Generation of Simulated Gaussian Ran-

dom Functions with Exponential Correlation

Functions

Suppose one wants to simulate data from a Gaussian random process with

an exponential correlation function. We solve this problem by recursion,
generating successive values in the order x1, x2, . . ., xn−1, xn (a similar

method could be given to generate values in the reverse order). The first
value x1 at the smallest time can be chosen according to the probability

distribution obtained from Eq. (13). That is, x1 can be generated simply by
choosing a Gaussian random deviate with zero mean and with variance σ2.

At any later stage of the process, say the mth, where xm−1, xm−2, . . ., x2, x1

are known, we must generate xm using the conditional distribution function
(17). Thus one determines the simulated value xm as a Gaussian random

deviate with mean rm−1xm−1 and variance σ2(1− r2m−1). Successive values
of the xi can be determined in this way, leading to a complete simulation of

the process.
For some applications it may be desirable to be able to add new points

to the process that are not necessarily endpoints. This can be done through
the use of Eqs. (26) and (27) rather than Eq. (17). This is slightly more

complicated procedure, but statistically is equivalent.
It is easy to simulate the random walk process using the same recursive

steps as for the exponential process, except that the initial value, say x1,
is not well defined, since the variance of that value is technically infinite.
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However, if one simply takes the initial value to be x1 = 0, then all other

values can be interpreted as the increments from that initial value.
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