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Introduction

In the deep ocean, when the subsurface sound velocity profile has a mini-
mum at some depth, there is a deep sound channel that allows long-distance
acoustic propagation. Within a range of angles around the horizontal, rays
launched within the sound channel are refracted in such a way as to remain
within the channel, neither intersecting the ocean surface nor (for a suffi-
ciently deep ocean) the bottom.

While it is not difficult, for any given sound velocity profile v(z), to trace
the sound rays by numerical solution of ODEs, such solutions are inconve-
nient for developing an intuitive understanding of the associated phenomena.
We here derive an analytic model that, while not exact, furthers such under-
standing.

Derivation of the Analytic Model

We first derive Snell’s law in the standard way. Consider a small vertical
section, height ∆z, of an acoustical wavefront propagating locally in the +x
direction. Suppose that the sound velocity is v1 at the bottom of the segment
and v2 at the top of the segment. Then after time ∆t, the bottom of the front
has advanced a distance v1∆t, while the top has advanced v2∆t, introducing
a change in slope of (v2 − v1)∆t/∆z = ∆v∆t/∆z over a distance v∆t. So,
in the limit, we have for the change in the ray direction from horizontal,

dθ

dx
= −

1

v

dv

dz
= −

d log v

dz
(1)
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When we apply this to rays other than horizontal, we are making a small-
angle approximation, and we do this henceforth.

Equation (1) when paired, again in small angle approximation, to the
geometrical equation

dz

dx
= θ (2)

gives the ray-tracing equation

d2z

dx2
= −

d

dz
log v(z) (3)

This is the equation of an undamped anharmonic oscillator with potential
log v(z). Any profile v(z) with a minimum thus implies the existence of rays
whose depth oscillates between an upper and a lower turning point. Because
the equation is undamped, there is a conserved “energy”

E(x) =
1

2

(

dz

dx

)2

+ log v(z) = constant (4)

along every ray. In particular, a ray launched horizontally at any depth will
return to that same depth at a subsequent turning point.

Harmonic Case

It is convenient first to consider the unrealistic case where the oscillator is
exactly harmonic, that is, the case where log v(z) is exactly a parabola. Then,
if P is the period of the harmonic oscillator, the general solution is a linear
combination of sin(2πx/P ) and cos(2πx/P ). In particular, the solution for
a ray launched at depth z0 with slope z′

0
≡ dz/dx is

z(x) = z0 cos(2πx/P ) + z′
0
sin(2πx/P ) (5)

Although we might loosely call the z coordinate “depth”, we are measuring
it upward from the location of the velocity minimum (the axis of the sound
channel), not downward from the surface. Equation (5) implies that the
amplitude A of z(x), measured from the velocity minimum upwards to any
upper turning point, is

A = (z2
0
+ z′

0

2
)1/2 (6)

Exactly those rays with amplitudes A less than the depth of the velocity
minimum do not intersect the surface. It is thus convenient to measure
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Figure 1: Acoustic rays traced from two different depths, showing all angles
that remain in the sound channel (do not intersect the surface). Shown is the
unrealistic case of an harmonic potential. Top: launched from the center of
the sound channel. Bottom: launched from a depth 0.1 of the sound channel
center depth (that is, z = 0.9).

vertical distance in units of the depth of the velocity minimum. Then, at
any vertical position z0 rays launched with angles (slopes) satisfying

−

√

1− z2
0
< z′

0
<

√

1− z2
0

(7)

will not intersect the surface. In other words, from any position z0, equation
(7) defines our angular “window” into the sound channel. It is convenient for
us, henceforth, to measure angles in units of (1− z2

0
)1/2, so that our window

extends, in these units, from −1 to +1. Similarly, it is convenient to scale
horizontal distances in units of the period P , which is the distance to the
first convergence zone (CZ).

With these scaling conventions, Figure 1 shows rays that fill the sound
channel window as launched from two different depths, first from the center
of the sound channel (depth of the velocity minimum), and second from a
shallower z = 0.9 (i.e., depth 0.1 times the velocity minimum depth).
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Figure 2: Ray diagram of transmission in the deep sound channel for a source
on the axis (after Whitman).

Anharmonic Case

In the bottom diagram of Figure 1, we are particularly interested in rays
near the first convergence zone, around x = 1. What is notably unrealistic
about the harmonic case, and Figure 1, is that the rays return to a perfect
focus. This is a property of harmonic oscillators, but not of the general
anharmonic potential log v(z). A key property of anharmonic oscillators is
that their period P depends on their amplitude A. We need to capture this
in our model. Expressing the relation as a Taylor series, by analyticity (or
symmetry) the linear term must be absent, so

P = P0(1 + coefficient ×A2 + . . .) ≈ P0[1 + α(z2
0
+ z′

0

2
)]/(1 + α) (8)

Here the approximation sign means that we are going to neglect all terms
except the lowest order one, in A2. The denominator factor 1 + α is chosen
to make P0 the period of the surface-tangent wave. Our model thus has a
single empirical parameter, α.

Figure 2, from a U.S. Navy popular article [1], shows a more realistic
set of ray traces from the center of a notional sound channel. One sees
that rays launched nearly horizontally (that is, with small amplitude) have
a period of about 1/3 of that of the ray that just touches the surface. So,
for the numerical results shown below, we take α = 2 as an illustrative
approximation.
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Figure 3: Same as Figure 1, but with anharmonicity introduced by the
period-amplitude relation of equation (8). The top figure is in qualitative
agreement with Figure 2’s “data”. (Note that Figure 2 does not plot a com-
plete set of positive and negative angles.)

Figure 3 shows ray propagation for our adopted anharmonic model, namely
equations (5) and (8) (with P0 ≡ 1). When our interest is in rays launched
and received relatively close to the surface (that is, at a small fraction of the
depth of the sound channel axis, as in Figure 3 bottom), then the adjustable
model parameter α controls the spread in range of the surface tangent rays
in the convergence zone around x = 1. We could in principle improve the
fidelity of the model by adding a parameter β to control the concavity (sec-
ond derivative) of these tangencies. (The simplest way to do this would be
by a β-dependent reparameterization of z near the surface.) These two pa-
rameters, α and (notionally) β capture almost everything that is observable
about the sound channel by shallow observations. That is, sound channels
with quite different velocity profiles at depth, but which happen to have the
same values α and β, should be nearly indistinguishable.
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Figure 4: Plimsoll “target” extending from the sea surface (labeled 0.0) down
to a depth 0.4 of the distance to the sound channel axis (labeled 0.4). We
can image this target acoustically at various ranges by mapping the angle
of rays from our position to their intersection with the target at range, thus
illustrating topological properties of the acoustic field in the sound channel.

Acoustic “Images”

One way to gain intuition about the acoustic effects of complicated ray paths
is to imagine that we can acoustically image a target at various distances. We
are at some depth z0, and (with the scaling mentioned above), our acoustic
image of the sound channel consists of incoming rays at angles 0 ≤ z′

0
≤ 1.

Imagine a fiducial “target”, such as that shown in Figure 4, suspended from
the sea surface – as if the underwater plimsoll on the side of a ship with very
deep draft! (In the Figure, the plimsoll extends to a depth 0.4 of the sound
channel axis.)

As we move a fiducial target out in distance (Figure 5), we first see the
target disappearing (x = 0.15) as rays from the receiver position are bent
down to below the target’s bottom. Approaching the convergence zone, two
images of the target, from its bottom, appear and expand (x = 0.77). By
x = 0.88 further splitting has occurred – note the high magnification (and
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x=0.15 x=0.77 x=0.88 x=0.93 x=1.03

Figure 5: Acoustic images of the target in Figure 4 at various ranges. From
left to right: x = 0.15, 0.77, 0.88, 0.93, and 1.03. The range of the CZ is
nominally x = 1 in these units.

therefore large acoustic intensity) from a target position at the same depth
as the receiver. By x = 0.93 there is pronounced further splitting, with thee
images of some depths (e.g., depth 0.1). Finally, beyond the convergence
zone, the two remaining images begin to disappear, one off the top, the other
off the bottom.

The above description, and Figure 5, become much clearer in the movie,
which can be viewed on YouTube at http://youtu.be/Q9hAmVLb8KY

Topology of the Images

Figure 6 shows a different view of the same simulation as shown in Figure 5.
The lower panel shows a magnified view of the rays around the convergence
zone. The receiver (far left of the figure, at x = 0) is at the depth shown as a
green horizontal line. The upper panel shows, as a function of range on the
same scale, the angle of arrival at the receiver of rays emitted from various
depths, labeled on the contour lines in the figure.
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One sees that, for all emitted depths, images first appear with increasing
range in pairs, then often bifurcate so that as many as three images can be
present together. Note that there is no continuation of the curves above or
below the angle of arrivals interval shown: outside of the range shown, rays
are not confined to the sound channel, but intersect the sea surface.

Also note that there are two topologically distinct classes of images, de-
pending on whether the source is above or below the receiver in depth. For
sources below the receiver, as a function of increasing range (red contours),
the second and third images appear by bifurcation below a single surviving
upper image, after the original lower image has disappeared. For sources
above the receiver (blue contours), the second and third images bifurcate
above a remaining upper image.

0.6

0.6

0.6

0.6

0.7

0.7

0.7

0.70.8

0.8

0.8

0.8

0.8

0.85

0.85

0.85

0.85

0.85

0.875

0.875

0.875

0.875

0.875

0.9

0.9

0.9 0.9

0.9

0.92

0.92

0.92

0.92

0.95

0.95 0.95

0.98

0.98

range (in units of CZ)

an
gl

e 
of

 a
rr

iv
al

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
−1

−0.5

0

0.5

1

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
0.5

0.6

0.7

0.8

0.9

1

range (in units of CZ)

z

Figure 6: Visibility of targets at various depths as a function of range from
receiver. The receiver is assumed to be at z = 0.9. (The surface is at
z = 1.) A target is visible when a vertical line in the top figure intersects its
labeled contour. It has multiple images when, as is usually the case, there
is more than one such intersection. One sees topologically distinct behaviors
for targets above the receive depth (z > 0.9) versus below the receiver depth
(z < 0.9).
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