
3 Radiation

Virtually all the information we get in astronomy comes to us as electromag-

netic radiation (radio, infrared, visible, UV, X-ray, or gamma ray), in other

words as photons.

3.1 Photon description of light

3.1.1 Photons

Light (or any EM radiation) comes in discrete particles called photons. The

basic principles are

� they move in straight lines at the speed of light c,

� they carry energy E and momentum p (each photon has some particular

energy E),

� they are conserved in number, except if emitted or absorbed by a

charged particle (e.g. the electron in an atom).

Each photon's E and p are related by

E = pc :

Note that p is the magnitude of the 3-vector momentum p

p = jpj :

3.1.2 Phase space density

A big part of understanding radiation is just bookkeeping on the positions

and directions of the photons: it's not just the number (density) of photons at
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each point that matters, but also the distribution of which way they are going,

and of what energies they have. Since the momentum vector p encapsulates

both the latter concepts (direction and energy) it is useful to think, at some

instant in time, of each photon being at a point in a 6-dimensional space of

position and momentum:

(x; y; z; px; py; pz) :

(I can only draw 2 of the dimensions:)

dp

dx

x

px

x

The phase space densityN is the number of photons dN per 6-dimensional

unit phase space:

dN = N dx dy dz dpx dpy dpz � Nd
3
x d

3
p :

Things get more interesting if we decide to keep track of the momentumpart

of phase space in spherical, not Cartesian coordinates.

pz

py

px

d p = p dpd3 2 Ω

Ωd is a solid angle
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Then,

d
3
p = p

2
dp d
 =

1

c3
E
2
dE d
 :

So, for photons in a �xed energy interval dE around E, d3p is proportional to

the solid angle element d
 that encompasses their directions and to E2
dE.

We should here say a word about the notation d
 for solid angle; it is

measured in steradians, a unit such that the full 2-sphere is 4� steradians,

i.e. Z
sphere

d
 = 4� :

In spherical polar coordinates, d
 decomposes into the two orthogonal direc-

tions,

d
 = sin �d�d' = �d(cos �)d' :

θ ϕsin d

θd

If we consider photons moving in one direction and normally incident on

a detector, then d
3
x is related to their ux:
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Q

dz

Q is area = dx dy
dz is thickness of slab of
photons moving at speed c

Photons in volume dx dy dz will slam into wall in a time dz=c. So,

(number per volume) =
1

c
(number per area per time);

or

d
3
x = c dx dy| {z }

normal area
d2�

dt � c d
2� dt :

Why do we care? Because of a very famous, subtle theorem of mechanics:

Liouville's Theorem: Phase space density of particles is constant along

the trajectory of any freely moving particle.
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Example: Compare photons close to and far from an extended source like

a star:

star

photons here are diffuse in
physical space (low density)
but highly collimated in
angle (high density).

photons here are crowded in physical
space (high density) but spread out
in solid angle (direction)

So, dilution of photon density is always accompanied by increased colli-

mation in a precise quantitative relationship!

3.1.3 Brightness

Let's compute the total energy dE in a small volume of phase space

dE = EdN = ENd
3
x d

3
p

= EN (cd2� dt)
�
1

c3
E
2
dE d


�

=
�
E
3
N=c

2
�
d
2� dt dE d


� Id
2� dt dE d
 :

Here we have de�ned

I = NE
3
=c

2
:

We see that I is the energy in photons per (normally incident) area per

time per solid angle per photon energy interval dE. I is called the \speci�c

intensity" or \brightness" of a radiation �eld at a particular point, in a

particular direction, at a particular energy.
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Note that since N is conserved (Liouville) and E is constant for each

photon, I is conserved too! If you look at a source while moving farther and

farther away, its brightness (in this context often called \surface brightness")

doesn't change. It gets smaller but not dimmer (per unit apparent size).

All optical systems indeed satisfy Liouville's Theorem. One implication is

that no telescope, however large, can make a scene look brighter than it looks

to the naked eye. It can only make it look bigger. However, for very small

\unresolved" sources like stars, bigger e�ectively is brighter, since there is

more light in the resolution element.

CCD detectors and photographic emulsions don't measure surface bright-

ness (as the eye does), but rather respond to total energy deposited per area

of collector. For these, a bigger telescope, gathering more total photons, is

advantageous. We will come back to this topic later.

3.2 Wave description of light

3.2.1 Waves

Because of quantum mechanics \wave-particle duality," photons also can

exhibit wave-like properties. In fact, in the classical limit of many photons,

they are described by the classical Maxwell equations of electromagnetism.

Basic principles:

� Relation between frequency � and wavelength �:

� =
c

�

� Two linear polarizations

� Reection from conducting surfaces (e.g. the aluminized surface of a

telescope mirror)
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� Refraction in lenses by the \principle of least time"

� Interference e�ects

� Finite resolution of an aperture: A telescope of aperture (diameter) D

cannot distinguish directions any �ner than about

�� =
�

D
(in radians)

The light from unresolved \point" sources is seen as blurred into a spot

of about this radius.

3.2.2 Connection between particle and wave descriptions

The energy of a photon (a quantum concept) is related to the frequency of

the photon (a classical concept) by Planck's famous

E = h�

where h = 6:63� 10�27erg sec is Planck's constant. One way to visualize the

photon as both a particle and wave is to think of it as a propagating wave

packet.

The more monochromatic (small �E or ��) the photon, the longer the

wave packet. This is why it is easy to do interference demonstrations with

laser light (very monochromatic) but quite di�cult with white light (large

��). The relation between length of wave packet and frequency (or energy,

or momentum) localization is of course the Heisenberg uncertainty principle.
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Notice that

dE = hd� :

3.3 Radiation units

3.3.1 Speci�c intensity I�

It is more common to characterize light intensity on a \per frequency" basis

than on a \per photon energy" basis. In terms of our old I (brightness) we

de�ne

I� � I
dE

d�
= hI :

Then, the �rst two equations in 3.13 above become

phase space density � N =
I�

�3

c
2

h4

and

dE = I�d
2� dt d� d


with I� having the units energy per (normal incidence) area per time per

frequency interval per solid angle, that is, erg s�1 cm�2ster�1Hz�1.

I� is a function of:

� position in space

� direction under consideration

� photon frequency under consideration

� (possibly, though not usually) time
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3.3.2 Speci�c intensity I�

Occasionally one wants to do the energy bookkeeping in terms of wavelength

� instead of frequency �. On then de�nes I� by the relation

jI� d�j = jI� d�j

So that dE = I� d
2� dt d� d
. (The absolute value bars are to be sure that

energy comes out positive.) Using � = c=�,�����d�d�
����� = c

�2
=

�
2

c
:

So

I� =
�
2

c
I� =

c

�2
I� :

Do not be confused by these extra factors of � or �. They are just bookkeep-

ing to make \per frequency" and \per wavelength" come out consistently

when describing the same amount of energy.

3.3.3 Net ux

If we want to know the total energy deposited onto a speci�c element of area

dA (on a detector, say), we integrate up the speci�c intensity coming from

solid angle elements in all directions. However, they do not all get equal

weight: the farther they are from normal incidence, the less \projected area"

of detector is available to them.

normal direction

d Ω

dA

θ
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The net ux F� (units erg cm
�2 s�1Hz�1) is thus

F� =
Z
I� cos � d
 :

In spherical coordinates, d
 = sin � d� d' = �d cos � d'. What are the limits

of integration? If dA represents an opaque detector, � goes from 0 to 90�.

On the other hand, if dA is transparent, then � goes from 0� to 180�, and

the cos � weighting is negative on the back side (90� < � < 180�).

For an isotropic radiation �eld I� is not a function of � or ', and one sees

that the net ux (including from the back) is exactly zero.

As before we can do the bookkeeping \per wavelength" instead of \per

frequency," with

F� �
�
2

c
F� =

c

�2
F� :

F� is the energy ux per area per time per wavelength interval. In fact, it is

exactly the same quantity that we called f� in the table of UBV photometry

in 2.2.1.

Note that we are always free to integrate up all the di�erent frequencies

and obtain total integrated ux:

F =
Z
F� d� =

Z
F� d� (erg s�1 cm�2)

I =
Z
I� d� =

Z
I� d� (erg s�1cm�2ster�1)

3.3.4 Energy density and radiation pressure

We already saw (3.1.2) that energy ux in a given direction is related to

the energy density of photons moving in that direction by a factor of c: the

block of photons smashes into the detector at that speed. Integrating over all

directions, the total energy density at a point, due to photons with energies
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between � and � + d�, is

u� d� =
1

c

�Z
I� d


�
d�

and the total energy density is

u =
Z
u� d� =

1

c

Z Z
I� d� d
 :

Pressure is force per area, or momentum transfer per area per time. Con-

sider photons bouncing back and forth between parallel perfect mirrors of

area A and separation L.

L

A

Each photon contributes �u = E=(AL) to the energy density (since the

volume is AL). Each photon gives a momentum transfer 2p each time it

bounces o� the mirror (+p goes to �p, so the di�erence is 2p). These bounces

occur (on a given mirror) every 2L=c time, so the photon's contribution to

the pressure is

�P =
2p

A(2L=c)
=

pc

LA
=

E

LA
= �u :

Adding up all the photons, we would �nd

P = u (but wait!)

We have forgotten that photons are moving at di�erent angles. A photon

moving at angle � to the normal still contributes E=(AL) to �u, but
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L

θ
θ

the momentum transfer is now only 2p cos �, and also it takes longer between

bounces,

�t =
2L=C

cos �
:

Therefore

�P = cos2 ��u :

Adding up all the photons is the same as averaging an isotropic distribution

over cos2 �:

hcos2 �i =

RR
cos2 � d� sin �d'RR

d� sin � d'

=
2�
R �
0 cos2 � sin � d�

2�
R �
0 sin � d�

=

R 1
�1 �

2
d�R 1

�1 d�
=

1

3

(where we set � = cos �). Another way to get this result is by symmetry:

Consider a randomly oriented unit vector, (x; y; z), with x
2 + y

2 + z
2 = 1.

Since there is nothing special about the x; y, or z directions with respect to

the unit sphere, we must have

hx
2
i = hy2i = hz2i :

But

hx
2
i + hy2i+ hz2i = hx2 + y

2 + z
2
i = h1i = 1 ;

so each one must be 1/3. Note that in spherical coordinates z = cos �, and

we are done.
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In either case, our �nal result is

P =
1

3
u :

The pressure of isotropic radiation is exactly 1/3 its energy density.

3.3.5 Example: Sphere of uniform brightness [From Rybicki and

Lightman]

Let us calculate the ux at an arbitrary distance from a sphere of uniform

brightness I = B (that is, all rays leaving the sphere have the same bright-

ness). Such a sphere is clearly an isotropic source. At P , the speci�c intensity

is B if the ray intersects the sphere and zero otherwise.

R
P

I=B

r

cθ
θ

Then,

F =
Z
I cos � d
 = B

Z 2�

0
d�

Z �c

0
sin � cos � d� ;

where �c = sin�1R=r is the angle at which a ray from P is tangent to the

sphere. It follows that

F = �B(1� cos2 �c) = �B sin2 �c

or

F = �B

�
R

r

�2
:

Thus the speci�c intensity is constant, but the solid angle subtended by the

given object decreases in such a way that the inverse square law is recovered.
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A useful result is obtained by setting r = R:

F = �B :

That is, the ux at a surface of uniform brightness B is simply �B.

3.4 Telescopes

3.4.1 Astronomical Telescopes

All modern telescopes (optical, radio, X-ray) are mirrors, not lenses. How-

ever, mirror optics is just lens optics folded over:

L

D D

L

Since it is easier to draw lenses, we will use the left hand �gure, but you

should mentally translate it to the right-hand one. D is the aperture, L the

focal length.

The basic rules of ray tracing are:

� rays go through center of lens undeected

� parallel rays get converged and come together at the focal length

That is all we need to get:
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D

d

δθ
δθ δl

L

This is the basic \prime focus" astronomical telescope. The detector (CCD

array) goes at the focus. The \image scale" is the ratio of physical distance

at the focus to angular distance in the sky, and it depends only on the focal

length (see �gure),

�l

��
= L or

��

�l
= 1=L :

For example, the 16.8 m focal length of the Palomar 200 inch corresponds to

12 arcsec/mm (check this!)

The �eld of view is determined by the focal length and the size of the

detector (d in the �gure)

��FOV = d=L :

In the above example, a CCD array of diameter 60 mm = 6 cm would have

a �eld of view of

60mm�
12 arcsec

1 mm
�

1 arcmin

60 arcsec
= 12 arcmin = 0:2� :

What is the relation between the surface brightness of an object in the

sky (a planet or galaxy, say) and the ux (energy per area per time) in its

image on the detector? We multiply I� by the area of the lens (mirror) and
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by the area conversion factor from sterradians to cm2 on the detector:

F� (detector) = I� (source)
�D

2

4

 
��

�l

!2

=
�

4
I�

�
D

L

�2
:

The quantity L=D is called the f number of the telescope, written \f=#,"

so

F� =
�

4
I�=(f=#)

2
:

Notice that the image plane ux does not depend on the size of the telescope,

but only on its f=#. Photographers are familiar with this fact: a light meter

dictates an f=# and shutter speed, independent of the focal length of the

lens.

The Palomar 20000 is a \slow" telescope, about f=3:5 (that is, f=# = 3:5).

Modern telescopes are often between f=1:75 and (state of the art) f=1:25.

That is, they are \short" (focal length) and \wide" (aperture). If image ux

depends only on f -number, why not make tiny little fast (f=1:25) telescopes

| Palomar in your pocket or Keck in your khakis? Answers:

� For bright objects (e.g. planets) we want the large image scale to get

more pixels (resolution elements on the detector) across the image.

� For faint objects (e.g. distant galaxies) we are photon-starved and care

not so much about energy per unit area on the focal plane as about

total number of photons from the object per time, which scales as D2.

3.4.2 Telescopes you look through (e.g. binoculars)

This is not astronomy, but it once was, and you might be interested.
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eyeball

eyepiece

pd
D

δθ
δθ

angle δϕ

fo
ca

l
pl

an
e

lL

D is the aperture; L is the focal length of the objective lens; d is the exit pupil; l is the eyepiece focal
length

The basic idea is that the objective makes an image at the focal plane,

and the eyepiece is simply a \magnifying glass" for looking at that image.

From the �gure you can derive

M = magni�cation =
�'

��
=

L

l
:

Notice that it is useless to have d bigger than p (the pupil size of the human

eye, no greater than about 9 mm when dark adapted) because the extra rays

simply do not enter the eye! Tracing the rays back, the maximum useful size

of D is

D = Md �Mp :

Bigger than this does not make a brighter image (Liouville's theorem, again).

Smaller than this does make a dimmer image. How can this be true without

violating Liouville? Answer: for ray bundles of diameter smaller than p, the

eye is no longer a good approximation to a \surface brightness meter" | it

is arti�cially \stopped down." (In bright light, of course, the eye naturally

stops down on its own, when the pupil contracts.)
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3.5 Thermal (\Black Body") Radiation

3.5.1 Black Body radiation is universal

There are many di�erent speci�c processes that can produce radiation (en-

ergy level changes in atoms, for example). These di�erent processes can and

do produce di�erent spectra, that is, di�erent functional forms for the depen-

dence of I� on �. It is therefore an amazing fact that all systems in thermal

equilibrium at a temperature T produce the same universal spectrum, called

the Planck or black body spectrum

I� = B�(T ) :

The reason for this involves both some statistical mechanics and some quan-

tum mechanics. Roughly it is that the electromagnetic degrees of freedom of

the system come to the same thermal equilibrium as the mechanical (motion

of particles) degrees of freedom, each one getting a mean energy of

 
energy in each

degree of freedom

!
=

1

2
kT

where T is the temperature and k = 1:3806 � 10�16 erg=�K is Boltzman's

constant (really just a unit conversion to go from the historical but arbitrary

temperature unit of \degrees" to the natural temperature unit of ergs).

The huge importance of the Planck spectrum in astrophysics is because

many things we see are perfectly | or very nearly | in thermal equilibrium.

So the Planck spectrum is almost the universal spectrum of astrophysics.

Example 1: The surface of the Sun is nearly a black body emitter at

5770� K.

Example 2: Looking at the \dark" night sky, we are actually looking at the
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cooling remnant radiation of the big bang | virtually a perfect black body

at T = 2:73�K.

3.5.2 Derivation of the Planck spectrum

In other courses you will learn to count the degrees of freedom (modes) in

the electromagnetic �eld and derive the Planck spectrum.

However, we can jump to the answer using things we already know, if I

just tell you a couple of \predigested" results from quantum mechanics and

statistical mechanics.

You have probably already seen the so-called \Boltzmann factor" that

gives the relative probability of something acquiring an energy E when it

has a temperature T ,

probability / e
�E=kT

:

For example, this is used to get the density law for an isothermal atmosphere

by putting E = mAgh (mA is the mass of an air molecule),

� / e
�mAgh=kT :

The Boltzman factor e�E=kT is actually the classical approximation (valid for

the atmosphere problem) to a deeper quantum mechanical result which we

now describe.

Remember phase space density, the number of particles per unit d3x d3p?

In quantum mechanics there is a natural unit (a kind of \quantum") for

phase space volume, and it is Planck's constant, cubed!

 
one quantum unit

of phase space

!
= h

3
:
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The occupation number of a quantum system is the number of particles in

one quantum unit of phase space, or in terms of the phase space density N

occupation number = Nh
3
:

The deep result on thermal systems is that they have a universal mean oc-

cupation number given by

occupation number =
1

eE=kT � 1
:

Notice that if E � kT the �1 is negligible and we recover the classical result.

There are two fundamentally di�erent kinds of particles in the universe

Fermions obey Pauli exclusion principle
use +1 above

includes protons, neutrons, electrons

Bosons \like to clump"

can correspond to classical wave �elds use �1 above

include photons, gravitons

Now lets put the pieces together, using the result in 3.3.1 that relates N

and I�

B�(T ) = I� =
N�

3
h
4

c2
= (occupation number)

h�
3

c2

= 2
h�

3

c2

1

eE=kT � 1
=

2h�3=c2

eh�=kT � 1
:

Where did the extra factor of 2 come from in the last two equations? It is

the two polarizations of photons. Each one separately gets the occupation

number (eE=kT � 1)�1, and I� counts both of them!

As before (Section 3.3.2) we have the option of accounting for the intensity

on a per-wavelength instead of per-frequency basis,

B� =
�
2

c
B� =

c

�2
B� :
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Since wavelength is easier to measure for light than frequency, one more

frequently sees B� and I� in observational contexts. A graph of B�(T ) shows

that hotter T 's indeed give both

� overall greater intensity everywhere, and

� peak at shorter wavelengths.

2000 K

1750 K

1500 K

1250 K

0 1 2 3 4 5
λ

B
 (

T
)

λ

in mλ µ

3.5.3 Asymptotics of the Planck spectrum

For h� � kT , there is an exponential fall-o� in brightness. This is called the

\Wien limit." It is why you cannot get a tan under an ordinary incandescent

light-bulb: The temperature of its �lament is around 2700� K, and so it makes

almost no UV.

For h� � kT the exponential can be expanded

exp

 
h�

kT

!
� 1 =

h�

kT
+ � � �

so that for hv� kT , we have the Rayleigh-Jeans law:

B�(T ) �
2�2

c2
kT :
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Notice that this result does not contain Planck's constant. It was originally

derived by assuming a mean energy E = kT , the classical equipartition value

for the energy of an electromagnetic wave (1
2
kT in each of two polarizations).

A plot of the Planck function over many decades of frequency, I�, and tem-

perature shows clearly the asymptotic regimes (see �gure on next page).

You can see why things are called \red hot" when the Wien limit is just

barely poking into the red from the infrared; then \white hot" when the peak

of B�(T ) is at the eye's maximum visibility (about 6000� K); then \blue hot"

when the eye's sensitivity is completely in the Rayleigh-Jeans regime. There

is nothing \hotter than blue hot," because higher temperature just increases

the Rayleigh-Jeans spectrum's amplitude, linearly with T , without changing

the functional form of its �2 dependence on frequency.
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The peak of the black-body spectrum is found, letting x = h�=kT , as

follows:

0 =
d

dx

 
x
3

ex � 1

!
=

3x2(ex � 1) � x
3
e
x

(ex � 1)2

) x = 3(1 � e
�x)

) (e.g. by trial and error) x � 2:82 ;

so at the peak

h�max = 2:82kT
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or

�max

T
= 5:88 � 1010Hz=K :

Notice that the extra powers of � in

B�(T ) = B�(T )

�����d�d�
����� = c

�2
B�(T )

shifts its peak a bit relative to B� , so at the maximum of B� (you can check

this)

h

�
c

�max

�
=kT = 4:97

or

�maxT = 0:290 cmK (\Wien's displacement law.")

The spectral sensitivity of the eye is di�erent to bright light (cones) than to

dim light (rods). Bright sensitivity peaks at 5600 �A(yellow) with an e�ective

width of about 1100 �A. (Note close similarity to the V band in UBV!) Dim

light sensitivity peaks at about 5000 �A(green) with about the same e�ective

width (see the �gure on the next page).

T =
(0:290 cmK)

5600�A
= 5200K

T =
(0:290 cmK)

5000�A
= 5800K (very close to T of sun.)

Not coincidence that we evolved to put our peak sensitivity at peak of solar

output! (Dim caves, moonlight, etc.)
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3.5.4 Integral of the Planck spectrum: Stephan-Boltzman law

What is the total energy density in an isotropic radiation �eld at constant

temperature (e.g. inside a furnace, or a star)?

From 3.3.4 we calculate

u =
1

c

Z Z
I� d� d
 =

4�

c

Z
I�d�

=
4�

c

Z
2h�3=c2

eh�=kT � 1
d�

=
4�

c

2h

c2

 
kT

h

!4 Z
1

0

x
3
dx

ex � 1

where x � h�=kT . The integral is just a number . You can do it numerically,

or look it up in a table of integrals. (Some day you should learn how to do

it by contour integration.)

The answer is �4=15, so

u =
8�5

15

k
4

h3c3
T
4
� aT

4
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where a is called the \radiation density constant" and has the value

a = 7:56464 � 10�15 erg cm�3K�4
:

Next: What is the emergent ux from a black body surface? That is, how

many ergs per second does it emit per unit area? In 3.3.5 we already obtained

the result

F = �B

relating ux and brightness, so

F = �

Z
I� d� =

c

4
u (from above)

=
ac

4
T
4
� �T

4
:

The physical constant � = ac=4 is called the Stefan-Boltzmann constant and

has the value

� = 5:66956 � 10�5 erg cm�2 s�1K�4
:

Example 1: A sphere of radius 7:0� 1010 cm has a temperature of 5770�K.

What is its luminosity?

L = 4�r2F = 4�r2�T 4

= 4�(7:0 � 1010 cm)2(5770K)4(5:67 � 10�5 erg cm�2 s�1K�4)

= 3:9 � 1033 erg= s :

Example 2: How many watts of total luminous power are emitted by the

standard \candle" that de�nes the lumen (1=60� cm2 at 2044� K)?

L = A�T
4 =

1

60�
cm2(2044K)4(5:67 � 10�5 erg cm�2 s�1K�4)

= 5:25 � 106 erg= s = 0:525W :
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In a real candle, many times this much power, perhaps � 100, is carried o�

convectively by hot air. Note that at T = 2044K (melting point of platinum)

�max =
0:290 cm K

2044 K
= 14000�A (infrared!)

So the \candle" is extremely red | we are seeing only its Wien-limit

tail. Lumens and lux are so-called \photometric" (apparent) units, which

therefore implicitly include the human eye's sensitivity, as opposed to \ra-

diometric" units, which are in absolute c.g.s. At more visible colors there are

therefore many more lumens per watt than the value � 2 that we got above

for the dull red glow of melting platinum. At 5550 �A, there is a peak of 680

lumens per watt. The lumens per watt conversion at other wavelengths is

this value times a standardized form of the sensitivity curve shown above

(3.5.3). Light bulbs are often labeled with their lumens value as well as their

wattage. For example, a typical 100W bulb may yield 1710 lumens for 750

hours.

3.5.5 Color temperature and brightness temperature

Color Temperature. Often a spectrum is measured to have a shape more or

less of blackbody form, but not necessarily of the proper absolute value. For

example, by measuring F� from an unresolved source we cannot �nd I� unless

we know the distance to the source and its physical size. By �tting the data

to a blackbody curve without regard to vertical scale, a color temperature Tc

is obtained. Often the \�tting" procedure is nothing more than estimating

the peak of the spectrum and applying Wien's displacement law to �nd a

temperature." [Rybicki and Lightman]

For example, the color temperature of moonlight is very nearly the same
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as that of sunlight. Long-exposure color pictures by moonlight appear in nor-

mal colors, despite the inability of your eye's cones to function at moonlight

levels.

Brightness Temperature. The Planck spectrum is monotonic with

temperature at each and every frequency � (see previous �gure). Therefore a

measurement of I� at any single frequency � determines a temperature, called

the \brightness temperature." Of course, identifying this temperature with

a real physical temperature of the emitting object depends on knowing the

the rest of the spectrum also �ts a black body shape. The Planck spectrum

by de�nition has the same brightness temperature at all frequencies.

The brightness temperature of the night sky is � 200 � 300K where the

atmosphere is opaque, and as low as 3�K (cosmic microwave background

temperature) in atmospheric \windows" of transparency.

0.1 nm 1 nm 10 nm 100 nm 1 µm 100 µm10 µm 1 cm 10 cm 1 m 10 m 100 m
0

1

wavelength
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an

sm
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on

Atmosphere 
is opaque

Optical 
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Atmosphere 
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Atmosphere 
is opaque

2.
2µ
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- 

5µ
8 

- 
12
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Note the \infrared windows" at 2:2�; 3 � 5�; 8 � 12�, as well as the large

optical and radio windows. UV and X-ray astronomy can only be done from

space.

3.5.6 Radiative temperature balance of the Earth

In the most naive model, the Earth maintains that temperature at which it

radiates (in the infrared) exactly the same average power as it receives from

the Sun. Note that the Sun illuminates �R2
� of projected Earth area, while
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the actual surface area is 4�R2
�
, so the average \insolation" (as it is called)

is 1/4 the solar constant

F ins =
1

4
� 1400w=m2

� 3:5 � 105 erg s�1 cm�2
:

The outgoing infrared ux at temperature T is �T 4, so:

�
5:67� 10�5 erg cm�2 s�1K�4

�
T
4 = 3:5� 105 erg s�1 cm�2

) T = 280�K = 7� C = 44� F chilly!

The reason the Earth is actually warmer than this is because of the

\greenhouse e�ect." Atmospheric gasses absorb the IR emitted from the

ground and re-radiate it to space. You might think that this is a \wash,"

but not so, as the following �gure shows:

vi
si

bl
e

IR IR
IR

2I I

I

I

greenhouse
gases H O, CO22

You see that the ground must radiate twice the incident ux I to stay in

equilibrium. Thus,

(5:67 � 10�5)T 4
K = 7:0� 105

) TK = 333�K = 60�C = 140� F hot!

The reason it is not this hot is that the greenhouse is not totally absorb-

ing (note the partial \windows" between 8 and 20� in the �gure in Section

3.5.5). You can see why there are environmental worries about increasing

the greenhouse gasses, however!
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Keep in mind that the above calculations are idealized, because clouds

reect sunlight directly, and because transport of heat from equatorial to

polar regions (by weather and ocean currents) is a big e�ect. It must still be

true, however, that net solar ux in equals total IR ux out when averaged

over time and latitude.

3.5.7 The spectral sequence of stars

Stars are classi�ed observationally primarily by their color temperature |

because, historically, this can be measured without knowing the distance.

Before black body radiation was understood, an alphabetic sequence was de-

veloped empirically. This spectral sequence correlates not only strongly with

color temperature, but also (not surprisingly) with the appearance of di�er-

ent absorption lines, because the ability of atoms in the outer atmospher of a

star to absorb light depends on their ionization state and, thus, temperature.

The Spectral Sequence

Spectral Color B-V color Temperature Spectral lines Examples
class Index (K)

O Blue-violet �:35 28;000� 50;000 Ionized atoms, Naos (� Pup),

especially helium Mintaka (� Ori)

B Blue-white �:16 10;000� 28;000 Neutral helium, Spica (� Vir),

some hydrogen Rigel (� Ori)

A White +:13 7;500� 10;000 Strong hydrogen, Sirus (� CMa),
some ionized Vega (� Lyr)
metals

F Yellow-white +:42 6;000� 7; 500 Hydrogen and ionized Canopus (� Car),

metals such as Procyon (� CMi)
calcium and iron

G Yellow +:70 5;000� 6; 000 Ionized calcium and Sun,
both neutral and Capella (� Aur)
ionized metals

K Orange +1:2 3;500� 5; 000 Neutral metals Arcturus (� Boo),
Aldebraran (� Tau)

M Red-orange +1:2 2;500� 3; 500 Strong titanium oxide Antares (� Sco),

and some neutral Betelgeuse (� Ori)
calcium
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9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

Here we are seeing the Rayleigh-Jeans

continua, ux proportional to

temperature, with relatively
small and few absorption features.
(Compare shape of curves in the �gure
in Section 3.5.2)

 �
here we clearly see the peak

of the Planck function, around 4500 �A

 � the Sun �ts in here (G5)

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

Here we are on the Wien tail,

with lots of messy absorption

lines and molecular bands.
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Within each spectral class there are �ner steps: : : : B0, B1, B2,: : :B9,

A0, A1: : :A9. etc. B5 is a typical B star. The Sun is a typical G star, that

is, G5. When astronomers �nally knew the distances to enough stars to get

their absolute magnitudes or luminosities, and plotted these against their

spectral types or color temperatures, they got a big surprise:
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The stars are not randomly scattered, but ordered in some weird way! Uh,

oh; call in the astrophysicists! This kind of diagram is called a Hertzsprung-

Russell or H-R diagram. Ejnar Hertzsprung discovered it in 1905, and Henry

Morris Russell re-discovered it nearly 10 years later. (News travelled slow

then. There were very few astronomers in the world and not many interna-

tional conferences.)
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3.6 Radiation emission mechanisms briey described

Black body radiation is radiation that has come to thermal equilibrium and

lost the memory of its original \creation." Sometimes, however, we are able

to see photons directly as produced by the underlying microscopic processes.

These need not have a Planck spectrum. What, microscopically, causes the

radiation we see? The direct cause is always the same: acceleration of a

charge creates radiation. The radiation is generally classi�ed according to

what causes the acceleration. We will list here three of the most important

mechanisms. (You will learn much more about this in Astronomy 150.)

3.6.1 Synchrotron radiation

Relativistic electrons being accelerated by magnetic �elds (moving in helical

patterns around �eld lines):

radiation emitted

e

B

-

Radiation is intense; often highly polarized; usually power-law spectrum.

cut-off at low
frequency may
appear

log 
may bend/break 
at high frequency.

v

log vI
vI v α-

α ~ 0.5 but may be
~0 or ~2!

is proportional to

Radio emission; traces very energetic regions.
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3.6.2 Thermal bremsstrahlung

Thermal electrons (i.e. electrons with Maxwell-Boltzman distributions) mov-

ing near positive ions (e.g. H nuclei). Coulomb interactions cause the accel-

eration.

e

p

Radiation is less intense; almost unpolarized; very at spectrum in radio, \thermal" in X-ray (Planck-like).

typical radio:
typical X-ray:

e−ν/ν0

ν

ν

ν
νlog

−0.1

2.5

Iνlog

Usually associated with hot gas: X-rays from clusters of galaxies; HII regions; surface of sun.

Bremsstrahlung is usually associated with hot gas: X-rays from clusters

of galaxies, HII regions, or the surface of the Sun, e.g.

Synchrotron radiations and thermal bremsstrahlung are two of the com-

mon continuum emission mechanisms of gas. (Solids, e.g. surface of the

Earth, are di�erent.)

3.6.3 Line emission from atoms

Electrons jumping from higher to lower levels in atoms emit excess energy

as line radiation. The distribution of the lines in frequency and intensity are

characterisic of the chemical element involved.

58



unbound states
Energy

0

e-

ε h εν =

Ιν

ν

Spectrum

Seen from hot gas (may see lines from many types of atom simultaneously). Molecules also make lines.

There are also absorption spectra, radiation absorbed by cooler material

(lines or continuum), the inverse process.
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