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Dear Dr. Teukolsky:

When I obtained my copy of the most recent (3rd) edition of your book Numerical Recipes [68], I
noticed with pleasure that nonlinear sequence transformations are now also treated.

When writing a book like Numerical Recipes, which tries to incorporate virtually all computationally
useful mathematical techniques in a singe volume, there is an obvious conflict of breadth vs. depth.
Thus, the authors of such a book necessarily have to compromise, and according to experience it is
normally not possible to satisfy everybody with a compromise.

However, I think that your book is an excellent compromise, and that it is extremely useful for a
very wide audience of computationally oriented scientists and engineers. This was already true for
the FORTRAN version of the 1st edition [67], which I had bought many years ago. I am positive
that this new edition will also have the same favorable reception and the same impact on the whole
scientific community as the previous editions. Congratulations!

In the following text I will make some remarks on sequence transformations in general and on the
way that they are presented in your book. I do hope that these remarks will be of interest for you,
and they may even be helpful when you and your co-authors will write the next edition of your book.

As we all know, in applied mathematics or in the mathematical treatment of scientific or engineering
problems, slowly convergent or even divergent sequences and series abound. Accordingly, conver-
gence acceleration and summation techniques are at least potentially extremely useful in a large
variety of different contexts, and I can probably claim with some justification that anybody involved
in computational work should have at least some basic knowledge about the power, but also about
the shortcomings and limitations of these techniques.

Unfortunately, in the university curricula these techniques are treated at best at a very superficial
level, and more often not at all. Accordingly, university graduates tend to be fairly ignorant about
these things.

This was also true in my case. During my undergraduate studies, I had never heard anything about
these things, and even during the work for my PhD thesis [80], where I had to struggle with the effi-
cient and reliable evaluation of (complicated) series expansions for so-called molecular multicenter



integrals of exponentially decaying basis functions, I was completely ignorant about Padé approx-
imants or other nonlinear sequence transformation1 . During my PhD thesis, I was only aware of
linear and regular sequence transformations as they were described in the book by Knopp [56],
which is undeniably a very useful classic but now completely outdated from a computational point
of view.

My ignorance only changed when I did postdoctoral work at the Department of Applied Mathemat-
ics of the University of Waterloo in Waterloo, Ontario, Canada, where I – inspired by Jiřı́ Čı́žek
– applied Padé approximants and continued fractions for the summation of divergent power series.
Obviously, my stay in Waterloo had a huge impact on my later research.

It is thus my basic assumption that, when writing about convergence acceleration and summation
techniques, one always has to take into account that the hypothetical typical reader is fairly ignorant
at least about the subtleties of these techniques. Therefore, one has to proceed with great caution
and give the uninitiated reader a helping hand. This is also the reason why I like for instance your
Chapter 5.12 on Padé approximants very much: You provide a lot of useful information by means
of simple examples and do not try to show your mathematical sophistication and/or cleverness by
over-flooding the uninitiated reader with difficult mathematical details.

My assessment about the general knowledge of hypothetical typical readers may sound pessimistic,
but I actually think that the situation is changing for the better. For example, the treatment of
nonlinear sequence transformation in the most recent edition of your book is in my opinion an
encouraging sign. Moreover, I recently found on the Internet that the Institute of Computer Science
at the University of Wrocław in Poland plans to offer a graduate course with the title “Convergence
Acceleration Methods”. This course is a part of the so-called “Studies in English” for graduate
students. For me, this is a good sign, and I do hope that other universities will follow this example.

When writing about sequence transformations and related topics, one should also take into account
that the potential readers tend to be highly heterogeneous. Essentially, there are two radically dif-
ferent prototypes who have very different attitudes and preferences: Firstly, there are researchers –
mainly mathematicians – who essentially want to work on sequence transformations: They are pre-
dominantly interested in the mathematical properties of sequence transformations or in the deriva-
tion of error estimates and convergence proofs, but they usually do at best token applications of
sequence transformations. Secondly, there are many others – mainly scientists and engineers – who
only want to work with sequence transformations: They want to use these techniques as computa-
tional tools (and often as black boxes) in order to solve practical problems, but they usually do not
care too much about theoretical aspects and mathematical subtleties or even convergence proofs that
tend to be either unrealistic or not suited for practical applications.

Of course, this pragmatic attitude of scientists and engineers can easily lead to problems. Too often,
they simply lack a sufficiently broad background knowledge about the techniques they apply. For

1Actually, my ignorance about non-standard numerical techniques was at that time so bad that divergent
series were for me essentially some kind of mathematical pornography. Fortunately, this has changed not
only in my case, and the usefulness of divergent series for computational purposes is widely accepted. For
example, I recently came across a PhD thesis by Meurer [65] discussing the summation of divergent series in
the context of mechanical engineering. I am too ignorant in mechanical engineering to decide whether this is
a good thesis or not, but I nevertheless think that it is noteworthy that divergent series are now also used in
mechanical engineering.
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example, some years ago an article by Leung and Murakowski [58] was published in Journal of
Mathematical Physics in which a seemingly new generalization of Padé approximants was intro-
duced that utilizes information from a weak coupling and a strong coupling expansion. However,
these “new” rational approximants are noting but the well known two-point Padé approximants,
which are for instance described in a very detailed way in Chapter 7.1 of the book by Baker and
Graves-Morris [7] and which I had also applied some time ago for the summation of divergent per-
turbation expansions [34] (compare also the Acknowledgment in [59]). For me, the shocking thing
was not the lack of knowledge of the authors – this can happen – but rather the ignorance of the
referees of Journal of Mathematical Physics, which is usually considered to be a highly respected
journal2 .

The deep division among those who are interested in sequence transformations and related topics is
also obvious in the literature on sequence transformations. So far, books by mathematicians written
for mathematicians clearly dominate (see for example the books by Brezinski [14, 15, 16, 17, 18],
Brezinski and Redivo Zaglia [26], Cuyt and Wuytack [36], Delahaye [37], Liem, Lü, and Shih [61],
Marchuk and Shaidurov [63], Sidi [75], Walz [79], and Wimp [102]).

Unfortunately, the monographs listed above cannot be digested easily by computationally oriented
scientists or engineers who just want to use convergence acceleration and summation techniques as
computational tools in order to get their work done.

The problems with these mathematically oriented books become particularly obvious in the case of
Sidi’s book on sequence transformations [75], which is the most recent monograph on this topic.
Avram Sidi is a very good mathematician, and I highly appreciate and respect some of his work on
sequence transformations. Nobody can deny that Sidi’s book contains a wealth of information, and
it is very useful for anybody interested in the mathematical properties of sequence transformations.
Essentially, this book of more than 500 pages is a book written by an expert in this field for the few
other ones who can also claim to be experts in this field. However, Sidi’s style makes this book hard
to read even for specialists. Moreover, Sidi’s choice of topics – and in some cases also the deliberate
omission of certain topics – makes this book highly subjective. Therefore, non-specialist readers
may get a distorted view about the state of the art and the contributions of other researchers (compare
also my book reviews [31, 32]). Frankly speaking, I cannot imagine that anybody, who only wants
to work with sequence transformations, would bother to study Sidi’s impressive but difficult book
seriously. Personally, I think that Sidi’s book is a missed chance of further popularizing sequence
transformations among non-specialists, which I deplore very much. Sidi undoubtedly invested an
enormous amount of time and effort.

Nevertheless, I again have the impression that the situation is slowly improving, and that there are
now some books – or at least parts of books – that provide an easily digestible introduction to se-
quence transformations from the perspective of those who predominantly want to apply sequence
transformations as computational tools. I consider your book to be just another example that sup-
ports my claim.

For example, there is a book by Bornemann, Laurie, Wagon, and Waldvogel [12], which was re-
cently translated to German [13]. The topic of this book is extreme digit hunting in the context of

2Apart from this incident, I have a very good opinion of Journal of Mathematical Physics: I published
several articles in Journal of Mathematical Physics and plan to submit further manuscripts in the future.
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some challenging problems of numerical analysis. For this extreme digit hunting, the authors also
use sequence transformations, whose basic theory is described compactly in their Appendix A.

Of course, this Appendix A is much too short to provide a reasonably complete and balanced pre-
sentation of sequence transformation, but I think that a novice can benefit considerably from reading
this Appendix A. In particular, I like the extremely pragmatic approach of the authors of this book,
which is very uncommon among mathematicians. Probably, this is a consequence of the fact that
the authors of this book are not primarily interested in the mathematical theory of sequence trans-
formations: They only wanted to apply sequence transformations as computational tools in order to
get more precise results at acceptable computational costs.

For example, in [12, p. 230] one finds the following very instructive remark:

More than any other branch of numerical analysis, convergence acceleration is an ex-
perimental science. The researcher applies the algorithm and looks at the results to
assess their worth.

At least conceptually, this is very similar to a remark which I had made about Levin-type transfor-
mations at roughly the same time [95, p. 1241]:

As discussed in more details in the following article [94]3, our current level of theo-
retical understanding does not permit to predict which one of the numerous variants
of G

(n)
k (qm,sn,ωn) will give best results for a given convergence acceleration or sum-

mation problem. So, if we for example use one of the numerous Levin-type transfor-
mation for the summation of a divergent perturbation expansion, we are essentially
conducting a numerical experiment. As every good experimentalist knows, a single
experiment is only rarely able to provide a definite answer. Normally, a whole set of re-
lated experiments is needed to obtain convincing evidence. Of course, this applies also
to our numerical experiments. Therefore, we should not insist with a quasi-religious
zeal on using only a single (Levin-type) transformation which we for some reason may
prefer. Instead, it is usually a much better idea to compare the performance of several
different transformations.

Although I referred in this remark explicitly to Levin-type transformations, it of course also applies
to other sequence transformations as well. Moreover, it completely agrees with the following remark
from the book by Bornemann, Laurie, Wagon, and Waldvogel [12, p. 250] that should be heeded
not only by novices:

Whenever possible, use more than one extrapolation method.

You also mention this shortly in the 1st paragraph of [68, p. 217]. Nevertheless, it is my conviction
that the experimental nature of work with sequence transformations cannot be overemphasized.

Another instructive remark from the book by Bornemann, Laurie, Wagon, and Waldvogel, which I
like very much, is the following one [12, p. 225]:

3My article [94] is not yet finished and I am still struggling with some open problems.
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The question whether a series converges is largely irrelevant when the reason for using
a series is to approximate its sum numerically.

It is my conviction that factorially divergent asymptotic series expansions for special functions can
indeed be very useful computationally also for at most moderately large arguments. Levin-type
transformations4 and to a lesser degree also Wynn’s epsilon algorithm [104] can sum divergent
series of that kind quite effectively (see for example [87, 97]).

Then there is a recent book by Kythe and Schäferkotter [57]. It discusses the use of sequence
transformations to speed up the convergence of quadrature schemes beyond Romberg, and it also
mentions some of Sidi’s highly consequential work on this topic. Generally speaking, the combina-
tion of quadrature rules with extrapolation methods currently seems to be a “hot” topic. Thus, the
contents of this book may be of interest for you, in particular if you should intend to write some time
in the future another edition of your book, which I would welcome very much since computationally
oriented mathematics is progressing rapidly. Extrapolation techniques in numerical quadrature are
also discussed, albeit in less detail, in the already somewhat older book by Evans [40].

In the next few days a new book by Gil, Segura, and Temme [44] on the evaluation of special
functions should come out. It discusses in addition to various other computational techniques also
Padé approximants, continued fractions, and sequence transformations.

I would also like to make some comments on what you write in your book [68] about sequence
transformations.

In the text following Eq. (5.3.8) on p. 211, you write:

Sometimes convergence acceleration is helpful only once the terms start decreasing.

I had addressed this question as well as related problems with what I call irregular input data in
my article [92]. In this article, I studied the impact of irregular input data on the performance of
sequence transformations. My main model system was the Gaussian hypergeometric series

2F1(a,b;c;z) =
∞

∑
n=0

(a)n(b)n
(c)n

zn

n! (1)

with a negative third parameter c < 0 but −c /∈ N0. The terms of such a hypergeometric series
initially look like the terms of a mildly divergent series. Only for higher indices do the terms settle
down and eventually vanish. The results in [92] show that sequence transformations fail horribly and
produce nonsensical results if the leading irregular terms of such a 2F1 are used as input data. It is,
however, important to note that different sequence transformations produce different nonsense. By
comparing the disagreeing results of several different sequence transformations, it is immediately
obvious that something is wrong. If we only use a single transformation, this is by no means
immediately obvious.

Thus, the numerical results presented in [92] provide strong support for my claim – or also the
claim of Bornemann, Laurie, Wagon, and Waldvogel [12, p. 250] – that it is advisable to use more

4A fairly complete list of so-called scalar Levin-type transformations can be found in an article by Home-
ier [52].
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than a single transformations. Of course, the agreement of the results of several different sequence
transformation does not prove that these results are correct. Nevertheless, such an agreement helps
to gain confidence in the validity of the numerical results. Moreover, the disagreement of the results
of different transformations as seen in [92] is extremely valuable because it indicates very strongly
that one cannot trust these numerical results and that something has gone wrong.

In the 2nd paragraph on p. 212, you recommend using instead of the mathematically simpler linear
and regular sequence transformations the mathematically more complicated, but also more powerful
nonlinear sequence transformations. I very much welcome this. There are still too many mathe-
matical authors who endorse linear transformations. For example, in Zayed’s relatively recent book
[106, Chapter 1.11.1], the classic summability methods associated with the names of Cesàro, Abel,
and Riesz are reviewed, but the (much) more powerful nonlinear summation methods as for example
Padé approximants are completely ignored.

In the text following Eq. (5.3.11) on p. 212, you write about the iterations of Aitken’s ∆2 process
[2]:

(In practice, this iteration will only rarely do much for you after the first stage.)

Here, I disagree. The iteration of Aitken’s ∆2 process as described in [81, Eq. (5.1-15)] actually
produces a fairly powerful sequence transformation (see for example [81, Table 13-1 on p. 328] or
the discussion in [81, Section 15.2]).

However, I also think that Wynn’s closely related epsilon algorithm [104], which you discuss on pp.
212 - 213, is usually (much) more stable. Moreover, in the context of series expansions for special
functions, Levin-type transformations usually give clearly better results. Therefore, it makes sense
not to emphasize Aitken’s iterated ∆2 process as a particularly useful numerical tool in your book,
which obviously has serious space constraints.

It may be of interest that Wynn’s epsilon algorithm [104] is not restricted to so-called scalar input
data that are either real or complex numbers. Numerous generalizations of the epsilon algorithm to
other types of input data are discussed in a review by Graves-Morris, Roberts, and Salam [50].

In the 3rd paragraph on p. 214, you make the following remark about Levin’s sequence transforma-
tion [60]:

The Levin transformation is probably the best single sequence acceleration method
currently known.

My own work both on and with sequence transformations should show that I also do believe that
Levin’s idea of introducing explicit truncation error estimates into the transformation process was
a very good and highly consequential idea, and that Levin-type transformations are beyond doubt
at least potentially more powerful than other transformations that cannot benefit from the input
of additional information contained in explicit remainder estimates. Nevertheless, I fear that your
remark can easily mislead novices. They might come to the wrong conclusion that it would suffice
to use exclusively Levin’s sequence transformation in their numerical work.

I suspect that your verdict was strongly influenced by the extensive numerical studies performed
by Smith and Ford [76, 77]. I do not question the correctness of the investigations of Smith and
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Ford, who deserve praise because they succeeded in raising public awareness of the usefulness of
nonlinear sequence transformations as computational tools. However, I think that it is dangerous
to rely too much on statistical arguments which – as I am willing to admit – clearly favor Levin’s
transformation and other Levin-type transformation. Let me try to explain my point of view by two
examples.

Quite a few years ago, I looked for test systems for my various sequence transformation programs.
In this context, I came across the following power series expansion for the digamma function [1,
Eq. (6.3.14)]:

ψ(1+ z) = −γ + z
∞

∑
ν=0

ζ (ν +2)(−z)ν . (2)

Since this power series is strictly alternating for z > 0, I expected in agreement with the observations
of Smith and Ford [76, 77] that certain variants of Levin’s sequence transformation should be able
to produce very good results for this power series. To my dismay, it turned out that Levin’s sequence
transformation and also other Levin-type transformations were not particularly powerful in the case
of the power series (2) and produced results that were clearly inferior to those obtained by Wynn’s
epsilon algorithm [104].

I understood these observations only much later when I prepared my article [93], in which I analyzed
the index dependence of the partial sums and the truncation errors of the power series (2) for ψ(z)
in more detail: The partial sums of the power series (2) possess truncation errors for which Wynn’s
epsilon algorithm seems to be more or less optimal.

The power series (2) for ψ(z) is relatively simple. Consequently, it is not too difficult to analyze
the index dependence of the truncation errors of this series. In the case of more complicated series
expansions and in particular if the series terms are determined numerically, such an analysis is
either very difficult or not possible at all. Thus, we would not be able to explain why for instance
Levin-type transformations fail to accomplish something substantial for a power series with a similar
behavior. If, however, we compare the performance of several different sequence transformations,
we would at least notice that only Levin-type transformations do not accomplish much, whereas
other transformations like the epsilon algorithm may produce (much) better results.

Another example, which shows that the observations of Smith and Ford [76, 77] can be badly mis-
leading in special cases, is the factorially divergent Rayleigh-Schrödinger perturbation series for the
ground state energy of the quartic anharmonic oscillator.

In my article [82], I applied Wynn’s epsilon algorithm [104], Levin’s d transformation (compare
[81, Eq. (7.3-9)]), and the d variant of the so-called S transformation (compare [81, Eq. (8.4-
4)]) to this divergent perturbation expansion. In these calculations, I used the first 22 perturbation
series coefficients, and I did everything in FORTRAN 77 on a Cyber 180-995 E with a precision of
approximately 29 decimal digits.

As shown in [82, Table II], the d variant of S gave best results, followed by the d variant of
Levin’s transformation, and Wynn’s epsilon algorithm, whose convergence is guaranteed because of
the Stieltjes nature of this perturbation series, was least effective. Qualitatively, these results were
confirmed in [82, Table I], where I applied the same sequence transformations to a hypergeometric
model series 2F0 – essentially the asymptotic series for a special complementary error function erfc
– which possesses the same rate of divergence as the perturbation series for the quartic anharmonic
oscillator.
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On the basis of these observation, it seemed to be perfectly legitimate and logical to conclude that
the d variant of S sums the factorially divergent perturbation expansion for the ground state energy
of the quartic anharmonic oscillator most effectively to its exact result, that the d variant of Levin’s
transformation also accomplishes this, albeit less efficiently, and that Wynn’s epsilon clearly ranks
last and is for this problem the least efficient transformation.

Unfortunately, these conclusions – although perfectly plausible on the basis of my numerical results
– were premature and based on incomplete evidence. During a stay in Waterloo in 1991, I repeated
my previous calculations [82] using now 200 perturbation series coefficients calculated exactly with
the help of Maple’s rational arithmetic5 , and I did the summation calculations in Maple with a
precision of up to 1000 decimal digits [99].

The results obtained in this way showed that the d variant of S was clearly the most effective trans-
formation for this and – as it became obvious later on – also for other related perturbation problems.
However, the results in [99] also showed unambiguously that the d variant of Levin’s transformation
– although apparently convergent in the case of small transformation orders – diverged for higher
transformation orders. In contrast, the summation results obtained by the d variant of S seemed
to converge also for very high transformation orders6 . Wynn’s epsilon algorithm was clearly less
efficient, but no divergence problems were observed.

The divergence of Levin’s transformation was also confirmed in [84, Table 2], where the summations
were performed with a Levin-type transformation that – depending on the value of a continuous
parameter – interpolates between Levin’s transformation and the S transformation.

On the basis of our current level of understanding, no completely satisfactory explanation of the
divergence of Levin’s d transformation in the case of the anharmonic oscillators is known. Person-
ally, I believe that this divergence my be due to subdominant contributions, but this is just unproven
speculation. This is a difficult topic, and subdominant contributions in numerically determined data
that also diverge factorially or faster with increasing index, are highly elusive objects. If you happen
to read German: A sufficiently detailed discussion of the divergence of Levin’s transformation can
be found in Chapter 10.6 of my habilitation thesis [85, pp. 211 - 216]. A similar divergence of
Levin’s transformation was observed by Čı́žek, Zamastil, and Skála [35, p. 965] in the case of the
hydrogen atom in an external magnetic field.

In numerous convergence acceleration and summation problems, it has been observed by various
authors (including myself) that suitable variants of Levin’s transformation often produce truly re-
markable convergence acceleration and summation results. Therefore, it would not at all be justified
to issue a general warning that Levin’s transformation should not be used since it can lead to di-
vergent results. Here, one should take into account that nonlinear sequence transformations are in
general nonregular. Accordingly, the convergence of the transformed sequence is not guaranteed,
let alone to the correct limit. Thus, I can only say that one should not trust Levin’s transformation
blindly. However, this applies also to any other nonlinear and nonregular sequence transformation.

If we use sequence transformations for the acceleration of convergence of series expansions of
special functions, we are in a relatively fortunate situation. We have explicit analytic expressions

5This at that time fairly challenging and very time-consuming calculation was only possible because we
had exclusive access to new and powerful Unix workstation that later served several research groups.

6Nevertheless, I would not be surprised if similar types of divergence could also occur in summation
calculations involving S with very high transformation orders.
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for the series terms, and if we are willing to invest enough time and effort, we may even be able to
construct sufficiently simple approximations to the truncation errors that hold in the limit of large
indices. Accordingly, we have a relatively good chance that we understand what we are doing when
applying a sequence transformation. Under these fortunate circumstances, one can even hope for
rigorous convergence proofs (although they certainly would not be trivial).

If, however, we are dealing with series expansions whose terms are determined numerically (as
it is the case with quantum mechanical perturbation expansions), we are normally fairly ignorant
from a theoretical point of view. Consequently, the use of a sequence transformation is essentially a
numerical experiment whose intricacies are at best partly understood. In such a case, it is undeniably
helpful to use more than a single sequence transformation.

In [81, Section 3.2 on pp. 211 - 212], I formulated a general construction principle for Levin-type
transformations based on annihilation operators, which is also described in your Webnote No. 6
“Derivation of the Levin Transformation” and which is based on the assumption that the truncation
errors {rn}

∞
n=0 of of a model sequence {sn}

∞
n=0 can be partitioned into the product of a remainder

estimate ωn and a correction term zn according to

rn = sn − s = ωnzn , n ∈ N0 . (3)

From a purely formal point of view, such a partition is always possible and thus a triviality. How-
ever, in Levin-type transformations it is assumed that the remainder estimates {ωn}

∞
n=0 are explicitly

known, which obviously makes (3) not so trivial. The correction terms {xn}
∞
n=0, which typically con-

tain free parameters, should then be chosen in such a way that the products ωnzn provide sufficiently
accurate and rapidly convergent approximations to the actual remainders rn.

The principal advantage of this approach is that only the correction terms {zn}
∞
n=0 have to be deter-

mined, but not the remainders {rn}
∞
n=0. If good remainder estimates can be found, the determination

of zn and the subsequent elimination of ωnzn from sn often leads to significantly better results than
the construction and subsequent elimination of other approximations to rn.

The model sequence (3) has – as also explained in your Webnote No. 6 “Derivation of the Levin
Transformation” – another indisputable advantage: There exists a systematic approach for the con-
struction of a sequence transformation which is exact for this model sequence. It is only necessary
that a linear operator T̂ can be found which annihilates for all n ∈ N0 the correction term zn accord-
ing to T̂ (zn) = 0. Then, a sequence transformation, which is exact for the model sequence (3), is
given by the following ratio [81, Eq. (3.2-11)]:

T (sn,ωn) =
T̂ (sn/ωn)

T̂ (1/ωn)
= s . (4)

I introduced the construction of sequence transformations via annihilation operators in [81, Section
3.2] in connection with the rederivation of Levin’s transformation [60], which is also presented
in your Webnote No. 6 “Derivation of the Levin Transformation”, and the construction of some
other, closely related Levin-type sequence transformations as for example the S transformation
[81, Sections 7 - 9].

Later, this annihilation operator approach was discussed in books by Brezinski [20] and Brezinski
and Redivo Zaglia [26] and in articles by Brezinski [19, 21, 22, 23], Brezinski and Matos [25],
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Brezinski and Redivo Zaglia [27, 28, 29], Brezinski and Salam [30], Homeier [52], Matos [64],
and myself [84, 95] and extended to other sequence transformations. The fact, that my annihilation
operator approach can also be used for the derivation of numerous other sequence transformations,
highlights, in my opinion, the rather obvious fact that annihilation of the truncation errors is the
central step of convergence acceleration and summation via sequence transformations.

Pragmatism dictates that the correction terms {zn}
∞
n=0 should be chosen in such a way that the cor-

responding annihilation operator T̂ satisfying T̂ (zn) possesses a manageable complexity and leads
to a convenient expression for the sequence transformation and/or to a simple recursive scheme.
However, the condition T̂ (zn) = 0 does not fix the choice of the remainder estimates {ωn}

∞
n=0, and

we have at least in principle quite a lot of freedom.

The choice of both {ωn}
∞
n=0 and {zn}

∞
n=0 determines a Levin-type sequence transformation of the

type of (4). However, for a given input sequence {sn}
∞
n=0, the choice of a suitable sequence {ωn}

∞
n=0

of remainder estimates seems to be crucial for the success or failure of a transformation process
involving Levin-type transformations: The remainder estimates {ωn}

∞
n=0 should correctly describe

the characteristic features of the input data {sn}
∞
n=0, whereas the correction terms {zn}

∞
n=0 should be

fairly unspecific and smooth functions of the index n.

As already mentioned above, the explicit incorporation of the information contained in the remain-
der estimates makes these transformations at least potentially more powerful than other transfor-
mations such as for example Wynn’s epsilon algorithm. However, the explicit incorporation of this
information is also the major weakness of Levin-type transformations. If it is possible to find re-
mainder estimates {ωn}

∞
n=0 such that the products ωnzn provide good approximations to the actual

remainders rn = sn − s, then we can expect (very) good transformation results. If, however, we
cannot find for a given sequence {sn}

∞
n=0 good remainder estimates {ωn}

∞
n=0, then we incorporate

non-existing or explicitly wrong information into the transformation process. In such a case, Levin-
type transformations will most likely produce (very) bad or even nonsensical results7 .

In [81, Eq. (7.3-1)], I had emphasized that the remainder estimates {ωn}
∞
n=0 should be chosen in

such a way that ωn is proportional to the dominant term of an asymptotic expansion of the actual
remainder rn (compare also [95, Eq. (4.5)]):

rn = sn − s = ωn
[

c+O
(

1/n
)]

, c 6= 0 , n → ∞ . (5)

In your book [68, Eq. (5.3.14)], you also state this asymptotic condition, which seems to be well
suited to rationalize and motivate the choice of suitable remainder estimates.

Unfortunately, I am no longer fully convinced that (5) is really appropriate: It may well be an over-
simplification. Using techniques described in [96], I constructed improved asymptotic estimates for

7In my own research, I encountered situations of that kind quite frequently. According to my experience,
this usually does not happen when trying to accelerate the convergence of a series expansion for a special
function. If, however, the series under consideration possesses a very difficult structure such as multiple inner
sums or if the series terms were determined by complicated numerical processes, then I frequently observed
that Levin-type transformations are less effective than for instance Wynn’s epsilon algorithm, which pursues a
much less ambitious transformation strategy. The best interpretation that I have to offer for this phenomenon
is that series terms produced by complicated processes are somehow “polluted”, not only by rounding errors,
but more seriously by subdominant contributions. Thus, simple model sequences of the type of sn = s+ωnzn
may be overly simplistic, and the resulting Levin-type transformations may turn out to be unsuited for difficult
convergence acceleration and summation problems of the kind mentioned above.
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the truncation errors of some series expansions for special functions8 . When I used these improved
asymptotic estimates as remainder estimates in appropriate Levin-type sequence transformations, I
observed in some cases that improved remainder estimates produced inferior transformation results.

I believe that these problems are related to the role of large index asymptotics in the mathematical
treatment of sequence transformations. Most sequence transformations are constructed via model
sequences, and most model sequences are based on heuristic reasoning inspired by large index
asymptotics, whose simplifying power makes it possible to identify and understand underlying hi-
erarchical structures9 .

However, there is a major problem: When using a such a sequence transformation, we implicitly
use the simplifying power of large index asymptotics in order to avoid the asymptotic regime of
large indices. This is an intrinsic contradiction which occasionally can lead to serious numerical or
convergence problems. It is by no means obvious that asymptotic expressions allow a reasonably
accurate description of the function it represents also in the nonasymptotic regime, i.e., for small
indices. If subdominant contributions play a dominant role in the nonasymptotic regime, problems
are extremely likely.

Since Levin-type transformations pursue a much more ambitious transformation strategy than other
sequence transformations that do not use explicit remainder estimates, it makes sense to assume
that they are more strongly affected by problems with subdominant contributions than other, less
ambitious sequence transformations.

If the asymptotic condition (5) should indeed turn out to be an oversimplification, then we have to
formulate an alternative criterion which the remainder estimates {ωn}

∞
n=0 have to satisfy. Maybe,

we can only demand that the remainder estimates {ωn}
∞
n=0 should be chosen in such a way that

the ratios [sn − s]/ωn are annihilated effectively already for small indices n by those annihilation
operators T̂ that satisfy T̂ (zn) = 0. Obviously, such a weak and somewhat vague statement would
not be as nice as the asymptotic condition (5).

In [68, Eq. (5.3.19)], you discuss the remainder estimates that give rise to Levin’s u, t, d, and v
transformation, respectively. It may be of interest for you that the asymptotic structure of sequences
that motivate these remainder estimates were discussed in a relatively detailed way in [95, Section
IV].

In [68, Eq. (5.3.19)], you call Levin’s d transformation a modified t transformation. This is not
correct. I showed in [95, Eqs. (4.41) - (4.53)] that all t-variants of the transformations considered in

8Here, improved means that the asymptotic expansion of rn = sn − s as n → ∞ in the sense of Poincaré
does not differ from ωn by a term proportional to 1/n, but by a term proportional to a higher power of 1/n.

9For example, in the summer of 2002 you exchanged on the Numerical Recipes Forum several messages
with some Jan M. who wanted to evaluate the Weierstraß P function with the help of sequence transforma-
tions. In my opinion, this Jan M. should have tried to analyze the large index asymptotics of the truncation
errors of the series expansion he wanted to use. I do not know whether this would have been feasible since
the Weierstraß P function seems to be a fairly complicated beast, but such an asymptotic approximation to
the truncation errors would have shown which – if any – of the conventionally used sequence transformations
should be best suited for an acceleration of the convergence of this difficult problem. Alternatively, it could
have given Jan M. some inspiration on the construction of a new sequence transformation that might be able
to do the job.
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this article actually do not exist as an independent variant and in fact are d-variants in disguise. The
most relevant formula for you is [95, Eq. (4.46)].

In the last paragraph of Chapter 5.3.2 on p. 216, you briefly mention Wynn’s rho algorithm [105]. I
do not completely agree with your assessment that the rho or related transformation does not offer
any advantages over the transformations which you discussed in more detail. According to my
experience, the relative power of Wynn’s rho algorithm and of related transformations compared to
Levin-type transformations depends very much on the problem under consideration. My personal
experiences seem to indicate that transformations like Wynn’s epsilon and rho algorithm are able to
accomplish at least some acceleration of convergence in situations in which the input data are highly
“polluted” and thus are essentially indigestible for Levin-type transformations.

According to my own practical experience, the most severe “pollution” occurred in the case of the
extrapolation of quantum chemical oligomer calculations to the infinite chain limit of a stereoreg-
ular quasi-onedimensional polymer as for example polyacetylene [33, 100, 101]. The input data
for these extrapolation calculations are produced by commercial or slightly adapted commercial
program packages for quantum chemical ab initio calculations as for example GAUSSIAN. These
packages do a lot of complicated numerics: First, the matrix elements – the so-called molecular
multicenter integrals – have to be calculated and then, a self-consistent diagonalization of some-
thing resembling an often huge generalized matrix eigenvalue problem has to be done iteratively
and self-consistently. All these computational steps require somewhat drastic approximations to
become feasible. Accordingly, in the case of such a program package, it is practically impossible
to apply the conventional techniques of numerical mathematics like backward error analysis. Thus,
program packages of that kind have to be viewed as huge “black boxes” that respond to some input
by producing some output of more or less unknown quality.

Nevertheless, it is possible to accomplish even under such difficult circumstances some stabiliza-
tion of transformation results. However, I consistently observed in the extrapolation calculations
mentioned above that for instance Levin’s u transformation was not particularly effective, whereas
Wynn’s rho algorithm was usually doing a (very) good job.

Wynn’s rho algorithm, which in its general form is given by the following recursive scheme [105],

ρ (n)
−1 = 0 , ρ (n)

0 = sn , n ∈ N0 , (6a)

ρ (n)
k+1 = ρ (n+1)

k−1 +
xn+k+1 − xn

ρ (n+1)
k −ρ (n)

k
, k,n ∈ N0 , (6b)

is the best known example of a whole group of closely related nonlinear transformations that can all
be very useful.

Wynn’s rho algorithm is actually a recursive scheme that computes an interpolating rational function

S2k(x) =
a(k)

0 +a(k)
1 x+a(k)

2 x2 + · · ·+a(k)
l xk

b(k)
0 +b(k)

1 x+b(k)
2 x2 + · · ·+b(k)

m xk
, k, l,m ∈ N0 , (7)

satisfying
S2k(xn+ j) = sn+ j , k,n ∈ N0 , 0 ≤ j ≤ 2k , (8)
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and interpolates the rational function to infinity. Thus, Wynn’s rho algorithm (6) tacitly assumes
that the interpolation points {xn}

∞
n=0 are strictly increasing and unbounded, satisfying

0 < x0 < x1 < · · · < xm < xm+1 < · · · , (9a)
lim
n→∞

xn = ∞ . (9b)

By iterating the explicit expression for ρ (n)
2 along the lines of Aitken’s iterated ∆2 process, the

following close relative of Wynn’s rho algorithm can be constructed [83, Eq. (6.3-3)]:

W
(n)

0 = sn , n ∈ N0 , (10a)

W
(n)

k+1 = W
(n+1)

k +
(xn+2k+2 − xn)

[

∆W
(n+1)

k
][

∆W
(n)

k
]

(xn+2k+2 − xn+1)
[

∆W
(n)

k
]

− (xn+2k+1 − xn)
[

∆W
(n+1)

k
]

, k,n ∈ N0 . (10b)

This is not the only possibility of iterating ρ (n)
2 . However, the iterations derived by Bhowmick,

Bhattacharya, and Roy [10] are significantly less efficient than W
(n)

k , which has similar properties
to Wynn’s rho algorithm [83]. In my opinion, it is very important to iterate the general form (6) of
the rho algorithm. Bhowmick, Bhattacharya, and Roy [10] were misled because they started from
the standard form (11) of Wynn’s rho algorithm which will be discussed later.

The main practical problem with sequence transformations based upon interpolation theory is that
for a given sequence {sn}

∞
n=0 one has to find suitable interpolation points {xn}

∞
n=0 that produce good

results. In fortunate cases, there may be additional information which answers this question, but in
general, this is both a nontrivial as well as a practically very relevant problem.

In the vast majority of all applications, Wynn’s rho algorithm (6) and its iteration (10) have been
used in combination with the interpolation points xn = n+1, yielding the standard forms10 (see for
example [81, Eq. (6.2-4)])

ρ (n)
−1 = 0 , ρ (n)

0 = sn , n ∈ N0 , (11a)

ρ (n)
k+1 = ρ (n+1)

k−1 +
k +1

ρ (n+1)
k −ρ (n)

k

, k,n ∈ N0 , (11b)

and [83, Section 6.3]

W
(n)

0 = sn , n ∈ N0 , (12a)

W
(n)

k+1 = W
(n+1)

k −
(2k +2)

[

∆W
(n+1)

k
][

∆W
(n)

k
]

(2k +1)∆2W
(n)

k
, k,n ∈ N0 . (12b)

However, these standard forms are not suited for all logarithmically convergent sequences of inter-
est. The elements of many practically relevant logarithmically convergent sequences {sn}

∞
n=0 can at

least for large indices n be represented by series expansions of the following kind:

sn = s + (n+β )−α
∞

∑
j=0

c j/(n+β ) j , n ∈ N0 . (13)

10Actually, in many articles as well as in some books only the standard form of the rho algorithm is
presented. In my opinion, this is not good, because we otherwise tend to forget that the rho algorithm can be
viewed to be the recursive solution of a rational interpolation problem that performs extrapolation to infinity.
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Here, α is a positive decay parameter and β is a positive shift parameter. In [66, Theorem 3.2], it
was shown that the standard form (11) of the rho algorithm accelerates the convergence of sequences
of the type of (13) if α is a positive integer, but fails if α is nonintegral. In the case of the iteration
of Wynn’s rho algorithm, no rigorous theoretical result seems to be known but there is considerable
empirical evidence that it only accomplishes something if α is a positive integer.

If the decay parameter α of a sequence of the type of (13) is known, then Osada’s variant of Wynn’s
rho algorithm can be used [66, Eq. (3.1)]:

ρ̄ (n)
−1 = 0 , ρ̄ (n)

0 = sn , n ∈ N0 , (14a)

ρ̄ (n)
k+1 = ρ̄ (n+1)

k−1 +
k +α

ρ̄ (n+1)
k − ρ̄ (n)

k

, k,n ∈ N0 . (14b)

Osada also demonstrated that his variant accelerates the convergence of sequences of the type of (13)
for arbitrary α > 0, and that the transformation error satisfies the following asymptotic estimate [66,
Theorem 4]:

ρ̄ (n)
2k − s = O

(

n−α−2k) , n → ∞ . (15)
Osada’s variant of the rho algorithm can be iterated. From (14) we obtain the following expression
for ρ̄ (n)

2 in terms of sn, sn+1, and sn+2:

ρ̄ (n)
2 = sn+1 −

(α +1)

α
[∆sn][∆sn+1]

[∆2sn]
, n ∈ N0 . (16)

If the iteration is done in such a way that α is increased by two with every recursive step, we obtain
the following recursive scheme [83, Eq. (2.29)] which was originally derived by Bjørstad, Dahlquist,
and Grosse [11, Eq. (2.4)]:

W
(n)
0 = sn , n ∈ N0 , (17a)

W
(n)
k+1 = W

(n+1)
k −

(2k +α +1)

(2k +α)

[

∆W
(n+1)
k

][

∆W
(n)
k

]

∆2W
(n)
k

, k,n ∈ N0 . (17b)

Bjørstad, Dahlquist, and Grosse showed that W
(n)
k accelerates the convergence of sequences of the

type of (13), and that the transformation error satisfies the following asymptotic estimate [11, Eq.
(3.1)]:

W
(n)
k − s = O

(

n−α−2k) , n → ∞ . (18)

The explicit knowledge of the decay parameter α is crucial for an application of the transformations
(14) and (17) to a sequence of the type of (13). An approximation to α can be obtained with the help
of the following nonlinear transformation, which was first derived in a somewhat disguised form by
Drummond [38] and later rederived by Bjørstad, Dahlquist, and Grosse [11]:

Tn =
[∆2sn] [∆2sn+1]

[∆sn+1] [∆2sn+1] − [∆sn+2] [∆2sn]
− 1 , n ∈ N0 . (19)

Tn is essentially a weighted ∆3 method, which implies that it is potentially very unstable. Thus,
stability problems are likely to occur if the relative accuracy of the input data is low. Bjørstad,
Dahlquist, and Grosse [11, Eq. (4.1)] also showed that

α = Tn + O(1/n2) , n → ∞ , (20)

14



if the elements of a sequence of the type of (13) are used as input data.

The sequence transformations mentioned above are not particularly relevant in the context of special
function evaluation – apart from Dirichlet series for zeta functions logarithmic convergence does not
occur too frequently in special functions theory which is dominated by power series – but in differ-
ent contexts logarithmic convergence occurs quite frequently. The main advantage of Wynn’s rho
algorithm and its close relatives is that they are (much) more robust than Levin-type transformations.

At the bottom of the 1st paragraph of Chapter 5.3.3 on p. 216, you mention divergent series with
monotonic terms. While the summation of strictly alternating divergent series has reached a rel-
atively high degree of sophistication11 , the summation of divergent monotonic series is a tricky
business that can easily lead to counter-intuitive results.

As an example, let us consider the geometric series:
∞

∑
ν=0

zν =
1

1− z . (21)

As is well known, this series converges in the interior |z| < 1 of the unit circle, and diverges for
|z| ≥ 1. A reasonable summation technique should sum the partial sums ∑n

ν=0 zν = [1−zn+1]/[1−z]
of the geometric series to the generalized limit 1/[1− z]. If, however, z is positive and greater 1,
then we get a highly counter-intuitive negative summation result. Let us for instance assume z = 2.
Then, we obtain a result that cannot be motivated with the help of simple plausibility arguments:

∞

∑
ν=0

2ν = 1+2+4+8+ . . . =
1

1−2 = −1 . (22)

Another very serious problem is that the summation of a monotone factorially divergent power series
with real terms usually must produce something complex, and to make things worse, the nonzero
imaginary part is a nonanalytic contribution that cannot be deduced in a straightforward way from
the divergent power series which is usually asymptotic as the effective argument approaches zero.

These complications can be understood comparatively easily on the basis of the exponential integral
[1, Eq. (5.1.1)],

E1(z) =
∫ ∞

z

exp(−t)dt
t , (23)

which possesses the following asymptotic expansion as z → ∞ [1, Eq. (5.1.51)],

zez E1(z) ∼
∞

∑
m=0

(−1)mm!
zm = 2F0(1,1;−1/z) , z → ∞ , (24)

and which can also be expressed as a Stieltjes integral [1, Eq. (5.1.28)]:

ez E1(z) =

∫ ∞

0

exp(−t)dt
z+ t =

1
z

∫ ∞

0

exp(−t)dt
1+ t/z . (25)

11Even the so-called truncation at the minimal term often suffices to produce results of acceptable accu-
racy in the case of strictly alternating divergent series. Moreover, techniques like Borel summation, Padé
approximants, and numerous sequence transformations are usually able to accomplish much more accurate
summation results.
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For z > 0, the Stieltjes integral on the right-hand side, which in this case coincides with the Laplace
integral of the Borel summation method, is perfectly well defined and can safely be used for the
evaluation of the exponential integral by numerical quadrature. For z < 0, there is, however, a pole
on the integration contour at t = −z. As a remedy, the integration contour has to be augmented by
a semicircular indentation around the pole into either the upper or lower part of the complex plane.
In the limit of a vanishing radius of the semicircular indentation, the Stieltjes integral has to be re-
interpreted as a Cauchy principal value integral of the type of the exponential integral Ei according
to [1, Eq. (5.1.2)]

Ei(z) = −
∫ ∞

−z

exp(−t)dt
t =

∫ z

−∞

exp(t)dt
t , z > 0 , (26)

and the semicircular indentation essentially produces half of the residue of the integrand exp(−t)
resulting from to the Stieltjes measure exp(−t)dt at the pole t = −z. Thus, we finally obtain [1, Eq.
(5.1.7)]:

E1(−z± i0) = −Ei(z) ∓ iπ , z > 0 . (27)

The sign of the imaginary contribution ∓iπ depends on the sign of −z± i0, i.e., whether the in-
tegration contour is indented into the upper or lower part of the complex plane. Accordingly, the
exponential integral E1(z) has a cut along the negative real axis.

If we replace in (25) z by 1/(−z± i0) = −1/z∓ i0 with z > 0 and combine the resulting expression
with (27), we obtain

exp
(

1/(−z± i0)
)

−z± i0
E1

(

1/(−z± i0)
)

= −
exp(−1/z)

x E1(−1/z∓ i0) (28)

=

∫ ∞

0

exp(−t)dt
1+(−z± i0)t (29)

=
exp(−1/z)

z
{

Ei(1/z) ∓ iπ
}

. (30)

This expression contains a nonzero imaginary part ∓π exp(−1/z)/z which is nonanalytic as z → 0.
However, the asymptotic series

∫ ∞

0

exp(−t)dt
1+(−z± i0)t ∼

∞

∑
m=0

m!zm = 2F0(1,1;z) , z → 0 , (31)

which we obtain by replacing z by 1/(−z± i0) in the asymptotic series (24), does not contain any
information on the nonanalytic imaginary part. Thus, we have the seemingly paradoxical situation
that a completely successful summation process has to yield something complex from a factorially
divergent series of positive terms. We also cannot recover the imaginary part by truncating the
divergent series appropriately.

Most summation methods cannot recover such a nonanalytic imaginary part without additional in-
formation about the function that is to be reconstructed from the divergent series. This is a serious
problem in quantum mechanics where the imaginary part of the summation of a divergent mono-
tone series can usually be linked to a resonance width and thus produces vital physical information
(compare for instance [43] and references therein).
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This lack of information about a possibly nonzero nonanalytic imaginary part is a serious limitation
of asymptotic series, which is related to the principal nonuniqueness of asymptotic series. Given
a function, its asymptotic series is unique if it exists. The converse is, however, unfortunately not
true. Thus, two or more functions that differ by nonanalytic contributions of the type of exp(−1/z)
all have the same asymptotic series as z → 0. The summation of a divergent power series can
be considered to be an attempt at reconstructing the function from its divergent asymptotic series.
Consequently, this principal nonuniqueness is a serious problem which can only be overcome if
some additional information on the function is available.

As remarked above, the reconstruction of a nonzero imaginary part from a factorially divergent
monotonic series is a more or less insurmountable problem for most of the commonly used sequence
transformations such as Wynn’s epsilon algorithm or Levin-type transformations. However, the
quadratic or more generally algebraic approximants introduced by Shafer [74], which generalize
Padé approximants, can accomplish this. Application of these approximants, a description of the
algorithmic problems, and further references can for instance be found in articles by Baker [5, 6],
Feil and Homeier [41], Fernández [42], Goodson [46, 47, 48], Goodson and Sergeev [49], Sergeev
and Goodson [73], Loi and McInnes [62], and Tourigny and Drazin [78].

On p. 217, you discuss the evaluation of the oscillatory integral representation (5.3.22) for the mod-
ified Bessel function K0(1). You essentially suggest converting this semi-infinite integral into an
alternating series of integrals between neighboring zeros of the Bessel function J0(x). The conver-
gence of this alternating series is most likely quite slow because of the slow decay of the integrand
in (5.3.22), but can be accelerated by a variety of techniques such as Wynn’s epsilon algorithm or
Levin-type transformations.

This is a standard approach, which should in principle work for any semi-infinite integral involving
a J function, but I strongly suspect that this approach is by no means optimal. I have a colleague

Hassan Safouhi
Faculté Saint-Jean
University of Alberta
8406, 91 Street
Edmonton, Alberta T6C 4G9
Canada

who has worked quite a lot on the numerical evaluation of highly oscillatory integrals with the help
of extrapolation techniques (see for example [9, 39, 69, 70, 71, 72] and references therein). I will
ask Hassan Safouhi whether he would be able to provide a more efficient approach for the integral
representation (5.3.22).

In Chapter 5.12 on pp. 245 - 247, you discuss Padé approximants and define them as the ratio of two
polynomials whose coefficients are the solution of the system of coupled linear equations (5.12.5)
and (5.12.6). This is standard. However, in this context, you might emphasize – just as you did it
in Chapter 3.5 on p. 129 – that this approach makes sense only if the coefficients of the Padé are
needed. In most practical applications, however, only the numerical values of Padé approximants
are needed. In that case, it is a much better idea to compute Padé approximants recursively. In my
own work, I have always used Wynn’s epsilon which you also describe in your book. A review of

17



different computational approaches for Padé approximants can be found in the book by Cuyt and
Wuytack [36, Chapter II §3, pp. 76 - 95] and in an older article by Wuytack [103].

In the 1st paragraph on p. 247, you write about Padé approximants:

Why does this work? Are there not other functions with the same first five terms in
their power series but completely different behavior in the range (say) 2 < x < 10?
Indeed there are. Padé approximation has the uncanny knack of picking the function
you had in mind from among all the possibilities. Except when it doesn’t! That is the
downside of Padé approximation: It is uncontrolled. There is, in general, no way to
tell how accurate it is, or how far in x it can usefully be extended. It is a powerful but
in the end still mysterious technique.

Of course, your remarks about Padé approximation apply just as well to other sequence transforma-
tions which also transform the partial sums of a formal power series to rational functions. I consider
your remark to be a confirmation of my view that any nontrivial application of Padé approximants
– or also of other sequence transformations – should be viewed as a numerical experiment, and that
the experimentalist should proceed with utmost caution. Theoretical error estimates are in most
cases of practical relevance useless.

I suspect that you are worried about the following kind of scenario: Let us assume that we have a
family of functions f j(z) all possessing power series about zero:

f j(z) =
∞

∑
m=0

c( j)
m zm , j = 0,1,2, . . . . (32)

Let us now construct a function F(z) according to the following rule:

F(z) =
M0

∑
m=0

c(0)
m zm +

M1

∑
m=M0+1

c(1)
m zm + . . . +

Mk+1

∑
m=Mk+1

c(k)
m zm + . . . . (33)

I am convinced that in this way a power series can be constructed that brings Padé approximants –
or any other class of rational approximants – down to their knees.

But firstly, such a function F violates some kind of philosophical principle which we tacitly assume
when applying a sequence transformation12 : A sequence transformation accomplishes an acceler-
ation of convergence and a summation in the case of divergence by detecting and utilizing some
regularity in the behavior of the data. It obviously makes no sense to apply a sequence transforma-
tion to a sequence with a completely random and arbitrary behavior, even if it ultimately converges.

Secondly, it should at least in principle be possible to detect that for instance the series coefficients
c(k)

m and c(k+1)
m possess a different index dependence. This can be accomplished with the help of Padé

prediction, which is an admittedly expensive technique that is best done symbolically and therefore
not necessarily practically applicable in all cases of interest.

12Padé approximation can be viewed to be simply some special sequence transformation since the partial
sums of a power series are transformed to a doubly indexed sequence of rational functions.
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Let us assume that the power series

f (z) =
∞

∑
ν=0

γν zν (34)

converges in a neighborhood of zero. A Padé approximant [l/m] f (z) to f (z) is a rational function

[l/m] f (z) =
P[l/m](z)
Q[l/m](z)

=
p0 + p1z+ p2z2 + · · ·+ plzl

1+q1z+q2z2 + · · ·+qmzm , (35)

which satisfies the asymptotic condition

f (z) − P[l/m](z)/Q[l/m](z) = O(zl+m+1) , z → 0 . (36)

This accuracy-through-order relationship implies that [l/m] f (z) can be written as the partial sum
from which it was constructed, plus a term which was generated by the transformation of the partial
sum to the rational approximant:

[l/m] f (z) =
l+m

∑
ν=0

γν zν + zl+m+1
P

[l/m](z) = fl+m(z) + zl+m+1
P

[l/m](z) . (37)

Similarly, the power series for f can be rewritten as follows:

f (z) =
l+m

∑
ν=0

γν zν + zl+m+1
Fl+m+1(z) = fl+m(z) + zl+m+1

Fl+m+1(z) . (38)

Let us now assume that the Padé approximants [l/m] f (z) provide better approximations to f (z) than
the partial sums fl+m(z) from which they are constructed:

| f (z)− [l/m] f (z)| < | f (z)− fl+m(z)| = |zl+m+1
Fl+m+1(z)| . (39)

Thus, already relatively small indices l and m of the Padé approximants suffice to produce reason-
ably accurate approximations,

| f (z)− [l/m] f (z)| < ε , (40)

where ε is a fixed positive real number. This, however, implies that a Padé transformation term
zl+m+1P [l/m](z) must also provide a sufficiently accurate approximation to the corresponding trun-
cation error zl+m+1Fl+m+1(z) of the power series according to

|zl+m+1
Fl+m+1(z)− zl+m+1

P
[l/m](z)| < ε . (41)

By transforming the partial sum fl+m(z) to a Padé approximant [l/m] f (z), the partial sum is aug-
mented by a term zl+m+1P [l/m](z) which tries to simulate the truncation error zl+m+1Fl+m+1(z) of
the power series.

Thus, if the construction of the Padé approximant improves convergence, we have instead of the bare
partial sum fl+m(z) something which effectively behaves like a partial sum with a larger number of
terms. Consequently, the truncation error of such a Padé approximant is smaller than the truncation
error of the partial sum from which it was constructed. This implies that the construction of a Padé
approximant also corresponds to something like the construction and elimination of approximations
to the actual remainders.

19



It is of course possible that a Padé approximant [l/m] f (z) provides an inferior approximation to f (z)
than the partial sum fl+m(z) from which it was constructed. However, also in this case the difference
between [l/m] f (z) and fl+m(z) is entirely due to the term zl+m+1P [l/m](z).

Padé approximants are by construction analytic in a neighborhood of the origin. Consequently, we
can do a Taylor expansion of either [l/m] f (z) or P [l/m](z) around z = 0, yielding

[l/m] f (z) =
∞

∑
ν=0

γ [l/m]
ν zν (42)

or equivalently

P
[l/m](z) =

∞

∑
ν=0

γ [l/m]
l+m+ν+1 zν . (43)

If P [l/m](z) and Fl+m+1(z) were equal – which is the case if if f is a rational function that can be
reproduced exactly by the Padé approximant [l/m] f (z) – we would of course obtain

γ [l/m]
l+m+ν+1 = γl+m+ν+1 , ν ∈ N0 . (44)

In the case of an essentially arbitrary function f , we have no reason to assume that P [l/m](z) and
Fl+m+1(z) are identical for finite values of l and m. Consequently, (44) will normally not be valid.
Nevertheless, the approximate equality of P [l/m](z) and Fl+m+1(z) for finite values of l and m
implies that at least the leading coefficients γ [l/m]

l+m+1, γ [l/m]
l+m+2, . . . of the Taylor expansions of P [l/m](z)

should provide approximations to the corresponding coefficients γl+m+1, γl+m+2, . . . of the power
series.

Our conclusions about the role of the Padé transformation term zl+m+1P [l/m](z) do not depend on
the initial assumption that the power series for f possesses a nonzero but finite radius of conver-
gence 0 < R < ∞. If the power series for f has a zero radius of convergence, the Padé approx-
imant [l/m] f (z) can still be partitioned into the partial sum f l+m(z) and the transformation term
zl+m+1P [l/m](z) according to (37), just as the now formal power series can still be partitioned into
the partial sum fl+m(z) and the truncation error zl+m+1Fl+m+1(z) according to (38). The only dif-
ference is that a Taylor series for Fl+m+1(z) now does not converge. Nevertheless, zl+m+1P [l/m](z)
provides an approximation to zl+m+1Fl+m+1(z) which implies that the approximate equality of the
leading coefficients γ [l/m]

l+m+1, γ [l/m]
l+m+2, . . . of the Taylor expansion (44) with the corresponding exact

series coefficients γl+m+1, γl+m+2, . . . still holds.

Thus, Padé approximants can be used to make predictions for unknown power series coefficients.
This fact was apparently first observed and utilized by Gilewicz [45].

In any way, with the help of Padé prediction, it should be possible to construct a Padé approximants
to F(z) defined by (33) from the first coefficients c(0)

m with 0 ≤ m ≤ M0. If the first and second
coefficients c(0)

m with 0 ≤ m ≤ M0 and c(1)
m with M0 + 1 ≤ m ≤ M1, respectively, differ sufficiently,

then we should be able to see it from the first prediction to c(1)
M0+1

made by this Padé approximants
constructed exclusively from the series terms c(0)

m with 0 ≤ m ≤ M0.

In [90] I had derived formulas which permit a comparatively convenient recursive computation
of the first prediction made by those Padé approximants that can be computed by Wynn’s epsilon
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algorithm. In [8]), it was shown that in this way very accurate predictions are possible. Prediction
techniques were also used in the articles [54, 55, 89]. These articles also contain numerous other
references.

In the context of practical applications, it is extremely important to get at least some idea that
explains not only the power of Padé approximation, but also its shortcomings.

In my opinion, one should always take into account that ordinary Padé approximants – or also other
rational approximants obtained for instance from Levin-type transformations – are local approxi-
mants since they only use information about the function, which they try to represent, from a single
point. Many people tend to forget that, since in the vast majority of applications, Padé approximants
provide much better local approximations than the partial sums of the power series from which
they are constructed, and in fortunate cases, Padé approximants constructed from a power series
expansion about zero even provide meaningful information about the behavior of the function under
consideration at infinity13. However, reliable approximation results over a larger range of arguments
usually require that we use two-point or more generally multi-point Padé approximants, which use
input from two or more points and which are for instance described in [7, Chapter 7.1]. According to
my own experience, two-point Padé approximants can be extremely useful [7]. There are, however,
two serious practical problems: Firstly, it is often not so easy to obtain expansions around two or
more expansion points. Secondly, computational algorithms for two- and multi-point Padé are not
nearly as sophisticated and convenient as those for ordinary Padé approximants.

It should be clear that the ability of Padé approximants that are constructed from an expansion
about zero of providing reasonably accurate approximations at infinity depends crucially on the
asymptotics of the function under consideration. Let us for instance assume that a function possesses
the following asymptotic behavior:

f (z) ∼ zα , z → ∞ , α ∈ R . (45)

If the decay parameter α happens to be not a positive or negative integer, but a real number, then
Padé approximants to f (z) constructed from the expansion about zero cannot provide good approx-
imations at infinity.

A possible remedy would be to construct a power series expansion of the function

g(z) = z−α f (z) . (46)

Since g(z) should approach in general a nonzero constant as z → ∞, diagonal Padé approximants –
or also other rational approximants obtained by applying sequence transformations – should be well
suited to describe the behavior of g(z) at infinity.

The idea of constructing rational approximants not to the function f (z), but to a related function
g(z) with a more appropriate asymptotic behavior, was the essential step that made the otherwise
very difficult summation calculations described in [86, 88, 98, 99] successful.

13A striking example of the power, which Padé approximation can have under favorable circumstances, is
the function given in [3, Eq. (1.1) on p. 3]. As shown in [3, pp. 4 - 5], already very small Padé approximants to
this function reproduce its behavior at infinity with remarkable accuracy, although the radius of convergence
of its power series is just 1/2.
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In [68, p. 247], you give general references on Padé approximants. In my opinion, the most complete
source on this topic is the monograph by Baker and Graves-Morris [7]. This is an excellent book by
two authors who work both on and with Padé approximants. Because of the wealth of information
it contains, anybody intending to work seriously either on or with Padé approximants will have to
study it. However, I have to concede that this book has a serious drawback: Its sheer size (746
pages) may look intimidating, in particular for novices. As a more condensed presentation I can
recommend another book by Baker on critical phenomena [4] whose Part III treats the theory of
Padé approximation in a sufficiently detailed way.

If you have any question about nonlinear sequence transformations or other related topics, please do
not hesitate to contact me.

Yours sincerely,

Ernst Joachim Weniger
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L. Wuytack (Editor), Padé Approximations and Its Applications, 375 – 392, Springer-Verlag,
Berlin (1979).

[104] P. Wynn, On a device for computing the em(Sn) transformation, Math. Tables Aids Comput.
10, 91 – 96 (1956).

[105] P. Wynn, On a Procrustean technique for the numerical transformation of slowly convergent
sequences and series, Proc. Camb. Phil. Soc. 52, 663 – 671 (1956).

[106] A. I. Zayed, Handbook of Function and Generalized Function Transformations, CRC Press,
Boca Raton (1996).

29


