NUMERICAL RECIPES
 Webnote No. 6, Rev. 1

Derivation of the Levin Transformation

A large class of modern nonlinear transformations can be derived by using a model sequence

$$
\begin{equation*}
\tilde{s}_{n}=s+\tilde{r}_{n} \tag{1}
\end{equation*}
$$

The transformation will be exact for the model sequence, and presumably will work well for other sequences with similar asymptotic properties. We partition the remainder \tilde{r}_{n} into a remainder estimate ω_{n} times another quantity z_{n} :

$$
\begin{equation*}
\tilde{s}_{n}=s+\omega_{n} z_{n} \tag{2}
\end{equation*}
$$

Here the "left-over" piece z_{n} is written as a finite sum of "basis functions,"

$$
\begin{equation*}
z_{n}=\sum_{j=0}^{m} c_{j} \phi_{j}(n) \tag{3}
\end{equation*}
$$

where the basis functions are some asymptotic sequence, such as $1 /(n+1)^{j}$. The key point is that you know some linear operator L that annihilates the basis functions: $L\left[\phi_{j}(n)\right]=0$, that is, $L\left[z_{n}\right]=0$. Then applying L to

$$
\begin{equation*}
z_{n}=\frac{\tilde{s}_{n}}{\omega_{n}}-\frac{s}{\omega_{n}} \tag{4}
\end{equation*}
$$

gives

$$
\begin{equation*}
s=\frac{L\left[\tilde{s}_{n} / \omega_{n}\right]}{L\left[1 / \omega_{n}\right]} \tag{5}
\end{equation*}
$$

Note how the unknown coefficients c_{j} have disappeared from the final expression (5) for s. Equation (5) is now used on the actual sequence s_{n} instead of the model sequence \tilde{s}_{n}. The last step in devising the algorithm is to find an efficient way to evaluate (5), typically by recurrence relations.

As an illustration of this technique, we derive the Levin transformation. Start by multiplying equation $(5.3 .13)$ by $(n+\beta)^{k-1}$:

$$
\begin{equation*}
(n+\beta)^{k-1} \frac{s_{n}-s}{\omega_{n}}=\sum_{j=0}^{k-1} c_{j}(n+\beta)^{k-j-1} \tag{6}
\end{equation*}
$$

Now note that the highest power of n on the right-hand side of (6) is n^{k-1}. Since a polynomial of degree $k-1$ in n is annihilated by the linear operator Δ^{k}, we use it
as L in equation (6) and get

$$
\begin{equation*}
s=\frac{\Delta^{k}\left[\frac{(n+\beta)^{k-1} s_{n}}{\omega_{n}}\right]}{\Delta^{k}\left[\frac{(n+\beta)^{k-1}}{\omega_{n}}\right]} \tag{7}
\end{equation*}
$$

We simplify this expression with some difference operator gymnastics: In terms of the shift operator E defined by

$$
\begin{equation*}
E f(n)=f(n+1) \tag{8}
\end{equation*}
$$

we can write $\Delta f(n)=f(n+1)-f(n)$ as $\Delta=E-1$. Thus by the binomial theorem

$$
\begin{equation*}
\Delta^{k} f(n)=(-1)^{k} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} f(n+j) \tag{9}
\end{equation*}
$$

Applying this result to (7), we get the explicit form of Levin's transformation, equation (5.3.15) of the main text.

