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Description of the QR Algorithm for
Hessenberg Matrices

Here we give the details of the QR algorithm for real Hessenberg matrices.
First, the trick to avoid complex arithmetic depends on a result analogous to the
lemma we used for implicit shifts in �11.4. The lemma we need here states that if B
is a nonsingular matrix such that

B �Q D Q �H (1)

where Q is orthogonal and H is upper Hessenberg, then Q and H are fully deter-
mined by column 0 of Q. (The determination is unique if H has positive subdiagonal
elements.) The lemma can be proved by induction analogously to the proof given for
tridiagonal matrices in �11.4.

The lemma is used in practice by taking two steps of the QR algorithm, either
with two real shifts ks and ksC1, or with complex conjugate values ks and ksC1 D
ks�. This gives a real matrix AsC2, where

AsC2 D QsC1 �Qs �As �QT
s �QT

sC1� (2)

The Q’s are determined by

As � ks1 D QT
s � Rs (3)

AsC1 D Qs � As �QT
s (4)

AsC1 � ksC11 D QT
sC1 �RsC1 (5)

Using (4), equation (5) can be rewritten

As � ksC11 D QT
s �QT

sC1 � RsC1 �Qs (6)

Hence, if we define
M D .As � ksC11/ � .As � ks1/ (7)

equations (3) and (6) give

R D Q �M (8)
where

Q D QsC1 �Qs (9)
R D RsC1 �Rs (10)
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2 Description of the QR Algorithm for Hessenberg Matrices

Equation (2) can be rewritten

As �QT D QT � AsC2 (11)

Thus suppose we can somehow find an upper Hessenberg matrix H such that

As � xQT D xQT �H (12)

where xQ is orthogonal. If xQT has the same column 0 as QT (i.e., xQ has the same
row 0 as Q), then xQ D Q and AsC2 D H.

Row 0 of Q is found as follows. Equation (8) shows that Q is the orthogonal
matrix that triangularizes the real matrix M. Any real matrix can be triangularized
by premultiplying it by a sequence of Householder matrices P 1 (acting on column
0), P2 (acting on column 1), : : : , Pn�1. Thus Q D Pn�1 � � �P 2 � P 1, and row 0 of
Q is row 0 of P 1 since P i is an .i � 1/ � .i � 1/ identity matrix in the top left-hand
corner. We now must find xQ satisfying (12) whose row 0 is that of P 1.

The Householder matrix P 1 is determined by column 0 of M. Since As is upper
Hessenberg, equation (7) shows that this column has the form Œp1; q1; r1; 0; :::; 0�

T ,
where

p1 D a200 � a00.ks C ksC1/C ksksC1 C a01a10
q1 D a10.a00 C a11 � ks � ksC1/
r1 D a10a21

(13)

Hence
P1 D 1 � 2w1 � wT

1 (14)

where w1 has only its first 3 elements nonzero (cf. equation 11.3.5). The matrix
P 1 �As � PT1 is therefore upper Hessenberg with 3 extra elements:

P1 � A1 � PT1 D

2
666666664

� � � � � � �
� � � � � � �
x � � � � � �
x x � � � � �

� � � �
� � �
� �

3
777777775

(15)

This matrix can be restored to upper Hessenberg form without affecting the first row
by a sequence of Householder similarity transformations. The first such Householder
matrix, P2, acts on elements 1, 2, and 3 in column 0, annihilating elements 2 and 3.
This produces a matrix of the same form as (15), with the 3 extra elements appearing
one column over: 2

666666664

� � � � � � �
� � � � � � �
� � � � � �
x � � � � �
x x � � � �

� � �
� �

3
777777775

(16)
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Description of the QR Algorithm for Hessenberg Matrices 3

Proceeding in this way up to P n�1, we see that at each stage the Householder matrix
P r has a vector w r that is nonzero only in elements r � 1, r , and r C 1. These
elements are determined by the elements r � 1, r , and r C 1 in column r � 2 of
the current matrix. Note that the preliminary matrix P 1 has the same structure as
P2; : : : ;Pn�1.

The result is that

Pn�1 � � �P2 � P1 � As � PT1 � PT2 � � �PTn�1 D H (17)

where H is upper Hessenberg. Thus

xQ D Q D Pn�1 � � �P2 � P1 (18)

and
AsC2 D H (19)

The shifts of origin at each stage are taken to be the eigenvalues of the 2 � 2
matrix in the bottom right-hand corner of the current As . This gives

ks C ksC1 D an�2;n�2 C an�1;n�1
ksksC1 D an�2;n�2an�1;n�1 � an�2;n�1an�1;n�2

(20)

Substituting (20) in (13), we get

p1 D a10 fŒ.an�1;n�1 � a00/.an�2;n�2 � a00/ � an�2;n�1an�1;n�2 �=a10 C a01g
q1 D a10Œa11 � a00 � .an�1;n�1 � a00/ � .an�2;n�2 � a00/�
r1 D a10a21

(21)

We have judiciously grouped terms to reduce possible roundoff when there are small
off-diagonal elements. Since only the ratios of elements are relevant for a House-
holder transformation, we can omit the factor a10 from (21).

In summary, to carry out a double QR step we construct the Householder ma-
trices P r ; r D 1; : : : ; n � 1. For P 1 we use p1, q1, and r1 given by (21). For the
remaining matrices, pr , qr , and rr are determined by the .r � 1; r � 2/, .r; r � 2/,
and .r C 1; r � 2/ elements of the current matrix. The number of arithmetic oper-
ations can be reduced by writing the nonzero elements of the 2w � wT part of the
Householder matrix in the form

2w � wT D
2
4
.p ˙ s/=.˙s/
q=.˙s/
r=.˙s/

3
5 � �1 q=.p ˙ s/ r=.p ˙ s/� (22)

where
s2 D p2 C q2 C r2 (23)

(We have simply divided each element by a piece of the normalizing factor; cf. the
equations in �11.3.)

If we proceed in this way, convergence is usually very fast. There are two pos-
sible ways of terminating the iteration for an eigenvalue. First, if an�1;n�2 becomes
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4 Description of the QR Algorithm for Hessenberg Matrices

“negligible,” then an�1;n�1 is an eigenvalue. We can then delete row and column
n � 1 of the matrix and look for the next eigenvalue. Alternatively, an�2;n�3 may
become negligible. In this case the eigenvalues of the 2�2matrix in the lower right-
hand corner may be taken to be eigenvalues. We delete rows and columns n � 1 and
n � 2 of the matrix and continue.

The test for convergence to an eigenvalue is combined with a test for negligible
subdiagonal elements that allows splitting of the matrix into submatrices. We find
the largest i such that ai;i�1 is negligible. If i D n � 1, we have found a single
eigenvalue. If i D n�2, we have found two eigenvalues. Otherwise we continue the
iteration on the submatrix in rows i to n � 1 (i being set to zero if there is no small
subdiagonal element).

After determining i , the submatrix in rows i to n � 1 is examined to see if the
product of any two consecutive subdiagonal elements is small enough that we can
work with an even smaller submatrix, starting say in rowm. We start withm D n�3
and decrement it down to i C 1, computing p, q, and r according to equations
(21) with 0 replaced by m and 1 by m C 1. If these were indeed the elements
of the special “first” Householder matrix in a double QR step, then applying the
Householder matrix would lead to nonzero elements in positions .m C 1;m � 1/,
.mC 2;m � 1/, and .mC 2;m/. We require that the first two of these elements be
small compared with the local diagonal elements am�1;m�1 , amm and amC1;mC1 . A
satisfactory approximate criterion is

jam;m�1j.jqj C jr j/� jpj.jamC1;mC1j C jammj C jam�1;m�1j/ (24)

Very rarely, the procedure described so far will fail to converge. On such ma-
trices, experience shows that if one double step is performed with any shifts that are
of order the norm of the matrix, convergence is subsequently very rapid. Accord-
ingly, if ten iterations occur without determining an eigenvalue, the usual shifts are
replaced for the next iteration by shifts defined by

ks C ksC1 D 1:5 � .jan�1;n�2j C jan�2;n�3j/
ksksC1 D .jan�1;n�2j C jan�2;n�3j/2

(25)

The factor 1.5 was arbitrarily chosen to lessen the likelihood of an “unfortunate”
choice of shifts. This strategy is repeated after 20 unsuccessful iterations. After 30
unsuccessful iterations, the routine reports failure.

Copyright 2007 Numerical Recipes Software


