Index

<table>
<thead>
<tr>
<th>Abstract Base Class (ABC)</th>
<th>24, 33, 34, 87, 114, 703, 874</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerated convergence of series</td>
<td>177, 211–218</td>
</tr>
<tr>
<td>Accuracy</td>
<td>8–12</td>
</tr>
<tr>
<td>Achievable in minimization</td>
<td>493, 497, 503</td>
</tr>
<tr>
<td>Achievable in root finding</td>
<td>448</td>
</tr>
<tr>
<td>Contrasted with fidelity</td>
<td>1037, 1046</td>
</tr>
<tr>
<td>CPU different from memory vs. stability</td>
<td>907, 931, 932, 1035, 1050</td>
</tr>
<tr>
<td>Adams-Bashford-Moulton method</td>
<td>943</td>
</tr>
<tr>
<td>Adams’ stopping criterion</td>
<td>467</td>
</tr>
<tr>
<td>Adaptive integration</td>
<td>901, 910–921, 928, 930, 935, 946, 995</td>
</tr>
<tr>
<td>Adaptive quadrature</td>
<td>155, 167, 194–196</td>
</tr>
<tr>
<td>and singularities</td>
<td>195</td>
</tr>
<tr>
<td>Alternative extended Simpson’s rule</td>
<td>160</td>
</tr>
<tr>
<td>AMD (approximate minimum degree)</td>
<td>544, 548</td>
</tr>
<tr>
<td>Amoeba</td>
<td>503</td>
</tr>
<tr>
<td>ANSYS</td>
<td>16, 1171</td>
</tr>
<tr>
<td>ANSI/ISO C++ standard</td>
<td>5</td>
</tr>
<tr>
<td>Approximate inverse of matrix</td>
<td>63</td>
</tr>
<tr>
<td>Approximation of functions</td>
<td>110</td>
</tr>
<tr>
<td>by Chebyshev polynomials</td>
<td>234, 625</td>
</tr>
<tr>
<td>by rational functions</td>
<td>247–251</td>
</tr>
<tr>
<td>by wavelets</td>
<td>711, 712, 989</td>
</tr>
<tr>
<td>Padé approximant</td>
<td>212, 245–247</td>
</tr>
<tr>
<td>Area</td>
<td>1126</td>
</tr>
<tr>
<td>sphere in n-dimensions</td>
<td>1128</td>
</tr>
<tr>
<td>triangle</td>
<td>1111</td>
</tr>
<tr>
<td>Arithmetic coding</td>
<td>755, 1160, 1181–1185</td>
</tr>
</tbody>
</table>
Arithmetic-geometric mean (AGM) method 1185
Array
assign function 27
centered subarray of 115
classes for 24–29
resize function 27
size function 27
three-dimensional 36
unit-offset 36
zero-offset 36
Artificial viscosity 1037, 1042
Ascending transformation, elliptic integrals 310
ASCII character set 1168, 1175, 1181
assign 27
Associated Legendre polynomials 971
recurrence relation for 294
relation to Legendre polynomials 293
Association, measures of 721, 741, 758–761
Asymptotic series 210, 216
exponential integral 216, 269
Attenuation factors 698
Autocorrelation
in linear prediction 673–675
use of FFT 648, 649
Wiener-Khinchin theorem 602, 682
Autoregressive model (AR) see Maximum entropy method (MEM)
Average deviation of distribution 723
Averaging kernel, in Backus-Gilbert method 1014
B-spline 148
Backsubstitution 47, 49, 53, 56, 103
complex equations 55
direct for computing $A^{-1} \cdot B$ 53
in band-diagonal matrix 60
relaxation solution of boundary value problems 966
Backtracking 522
in quas-Newton methods 478–483
Backus-Gilbert method 1014–1016
Backward deflation 464, 465
Bader-Deuflhard method 940
Bahl-Cocke-Jelinek-Raviv algorithm
forward-backward algorithm 867
Bairstow’s method 466, 471
Balancing 592, 594
Band-diagonal matrix 56, 58–61
backsubstitution 60
LU decomposition 59
multiply by vector 58
storage 58
Band-pass filter 667, 670
wavelets 701
Bandwidth limited function 605
Bank accounts, checksum for 1174
Bar codes, checksum for 1174
Barrier method 541
Bartels-Lolub update 535
Bartlett window 657
Barycentric coordinates 1114, 1116
Barycentric rational interpolation 113, 127, 128
Base class 23
Base of representation 8, 1164
Basin of convergence 461, 463
Basis functions in general linear least squares 788
Baum-Welch re-estimation
hidden Markov model 865–867
relation to expectation-maximization 866
Bayes’ theorem 774, 777, 825
Bayesian
approach to inverse problems 1005, 1022
contrasted with frequentist 774
estimation of parameters by MCMC 774, 824–835
lack of goodness-of-fit methods 779, 1010
normalizing constant 779
odds ratio 757, 779
parameter estimation 777, 778
prior 757, 775, 777, 1005
views on straight line fitting 787
vs. historic maximum entropy method 1022
Bayesian algorithms
hidden Markov model 868
Viterbi decoding 868
Bayesian networks 840, 841
node parents 841
nodes 840
posterior probabilities 841
prior probabilities 841
Bayesian re-estimation
hidden Markov model 864–866
Belief networks 840
forward-backward algorithm 867
Bellman-Dijkstra-Viterbi algorithm 556, 850, 853
Berlekamp-Massey decoding algorithm 852
Bernoulli number 164
Bessel functions 274–292
asymptotic form 274, 279, 284
complex 254
continued fraction 283, 284, 287, 288
fractional order 274, 283–292
Miller’s algorithm 221, 278
modified 279–283
modified, fractional order 287–289
modified, normalization formula 282, 288
modified, routines for 280
normalization formula 221
recurrence relation 219, 274, 275, 278, 281, 283–285
reflection formulas 286
reflection formulas, modified functions 289
routines for 276, 286
routines for modified functions 289
series for 210, 274
series for K_v 288
series for Y_v 284, 285
spherical 283, 291, 292
turning point 283
Index

Wronskian 283, 284, 287
Best-fit parameters 773, 781, 785, 822–824
see also Fitting
Beta function 256, 258, 259
incomplete see Incomplete beta function
Beta probability distribution 333, 334
deviates 371
gamma as limiting case 333
Betting 755–758, 760, 761
fair bet 755, 756, 758, 760, 761
proportional 758, 760
Bezier curve 148
BFGS algorithm see
Broyden-Fletcher-Goldfarb-Shanno algorithm
Bias
of exponent 8
removal in linear prediction 145, 678, 679
Biconjugacy 88
Biconjugate gradient method
elliptic partial differential equations 1030
for sparse system 88, 716
preconditioning 89, 1030
Bicubic interpolation 136–138
Bicubic spline 135
Big-endian 9
Biharmonic equation 153
Bilinear interpolation 133, 134
Binary block code 851
Binomial coefficients 256, 258
recurrences for 258
Binomial probability function 258, 338, 339
deviates from 374–377
moments of 735
Poisson as limiting case 338
Binormal distribution 746, 813
Biorthogonality 88
Bisection 115, 460
compared to minimum bracketing 492
root finding 445, 447–449, 454, 492, 584
Bispectrum 604
Bit 8, 754–756, 760, 761
phantom 9
pop count 16
reversal in fast Fourier transform (FFT) 610,
638
Bit-parallel random comparison 374
Bit-twiddling hacks 16
Bitwise logical functions 1170
test if integer a power of 2 16, 611
trick for next power of 2 16, 361
Black-Scholes formula 329
BLAST (software) 562
BLAT (software) 562
Block-by-block method 994
Bluetooth 1168
Bode’s rule 158
Boltzmann probability distribution 550
Boltzmann’s constant 550
Bolyai-Gerwien theorem 1127
Booie, information theory view of 758
Bool 25
Bootstrap method 809, 810
Bordering method for Toeplitz matrix 96
Borwein and Borwein method for π 1185
Boundary 196, 528, 955
Boundary conditions
for differential equations 900
for spheroidal harmonics 972, 973
in multigrid method 1072
initial value problems 900
partial differential equations 620, 1025,
1053–1058
two-point boundary value problems 900,
955–984
Boundary value problems 1026
see also Differential equations; Elliptic partial
differential equations; Two-point boundary
value problems
Bounds checking 35
in vector by at 35
Box 1099–1101
test if point inside 1100
tree of, as data structure 1101
Box-Muller algorithm for normal deviate 364
Bracketing
of function minimum 445, 490–496, 503
of roots 443, 445–447, 454, 455, 464, 465,
470, 492
Branch cut, for hypergeometric function 252–254
Break iteration 15
Brenner’s FFT implementation 611, 628
Brent’s method
minimization 489, 496–499, 785
minimization, using derivative 489, 499, 500
root finding 443, 449, 453–456, 459, 786
Broyden-Fletcher-Goldfarb-Shanno algorithm
490, 521–525
Broyden’s method 474, 483–486
singular Jacobian 486
Bubble sort 420
Bugs, how to report 5
Bulirsch-Stoer
algorithm for rational function interpolation
125
for second order equations 929
method 252, 318, 900, 901, 909, 921–929,
942
method, dense output 927
method, implementation 927
method, stepsize control 924–926, 929
Burg’s LP algorithm 677
Burn-in 826, 833–835
Butterfly 360, 361, 610
Byte 8
C (programming language) 1
__FILE__ and __LINE__ macros 30
idioms 16
syntax 12–17
C++
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/ISO standard</td>
<td>5</td>
</tr>
<tr>
<td>C family syntax</td>
<td>12–17</td>
</tr>
<tr>
<td>const statement</td>
<td>31, 32</td>
</tr>
<tr>
<td>contiguous storage for vector</td>
<td>27</td>
</tr>
<tr>
<td>control structures</td>
<td>14, 15</td>
</tr>
<tr>
<td>error class</td>
<td>30</td>
</tr>
<tr>
<td>inline directive</td>
<td>29</td>
</tr>
<tr>
<td>NR not a textbook on</td>
<td>2</td>
</tr>
<tr>
<td>operator associativity</td>
<td>12</td>
</tr>
<tr>
<td>operator precedence</td>
<td>12</td>
</tr>
<tr>
<td>overloading</td>
<td>28</td>
</tr>
<tr>
<td>scope, temporary</td>
<td>20, 21</td>
</tr>
<tr>
<td>standard library</td>
<td>10, 24</td>
</tr>
<tr>
<td>templates</td>
<td>17, 22, 26, 33, 34, 419, 421</td>
</tr>
<tr>
<td>throw</td>
<td>30</td>
</tr>
<tr>
<td>try and catch</td>
<td>30</td>
</tr>
<tr>
<td>types</td>
<td>25</td>
</tr>
<tr>
<td>types used in NR</td>
<td>4</td>
</tr>
<tr>
<td>user-defined conversions</td>
<td>31</td>
</tr>
<tr>
<td>valarray class</td>
<td>25</td>
</tr>
<tr>
<td>vector class</td>
<td>24</td>
</tr>
<tr>
<td>virtual function</td>
<td>33</td>
</tr>
<tr>
<td>why used in NR</td>
<td>1</td>
</tr>
<tr>
<td>C# (programming language)</td>
<td>1, 12</td>
</tr>
<tr>
<td>Calendar algorithms</td>
<td>2, 3, 6, 7</td>
</tr>
<tr>
<td>Calibration</td>
<td>778</td>
</tr>
<tr>
<td>Cardinal functions</td>
<td>1089–1091</td>
</tr>
<tr>
<td>Cards, sorting a hand of</td>
<td>420, 422</td>
</tr>
<tr>
<td>Carlson’s elliptic integrals</td>
<td>310–316</td>
</tr>
<tr>
<td>Carpe diem</td>
<td>830</td>
</tr>
<tr>
<td>catch</td>
<td>30</td>
</tr>
<tr>
<td>Cauchy principal value integrals</td>
<td>178</td>
</tr>
<tr>
<td>Cauchy probability distribution</td>
<td>322, 323</td>
</tr>
<tr>
<td>deviates from</td>
<td>367</td>
</tr>
<tr>
<td>see also Lorentzian probability distribution</td>
<td></td>
</tr>
<tr>
<td>Cauchy problem for partial differential equations</td>
<td>1024</td>
</tr>
<tr>
<td>Cavender-Felsenstein model</td>
<td>873</td>
</tr>
<tr>
<td>Cayley’s representation of (e^{iHt})</td>
<td>1049</td>
</tr>
<tr>
<td>CCITT (Comité Consultatif International Télégraphique et Téléphonique)</td>
<td>1171, 1180</td>
</tr>
<tr>
<td>CCITT-16 1171</td>
<td></td>
</tr>
<tr>
<td>CDF see Cumulative Distribution Function</td>
<td></td>
</tr>
<tr>
<td>Center of mass</td>
<td>399, 400, 1113, 1127</td>
</tr>
<tr>
<td>Central limit theorem</td>
<td>777</td>
</tr>
<tr>
<td>Central tendency, measures of</td>
<td>721</td>
</tr>
<tr>
<td>Centroid see Center of mass</td>
<td></td>
</tr>
<tr>
<td>Change of variable</td>
<td></td>
</tr>
<tr>
<td>in integration</td>
<td>170–172, 995</td>
</tr>
<tr>
<td>in Monte Carlo integration</td>
<td>401</td>
</tr>
<tr>
<td>in probability distribution</td>
<td>362</td>
</tr>
<tr>
<td>Char</td>
<td>25</td>
</tr>
<tr>
<td>Character-based clustering methods</td>
<td>869</td>
</tr>
<tr>
<td>Characteristic polynomial</td>
<td></td>
</tr>
<tr>
<td>digital filter</td>
<td>670</td>
</tr>
<tr>
<td>eigensystems</td>
<td>563, 583, 665</td>
</tr>
<tr>
<td>linear prediction</td>
<td>676</td>
</tr>
<tr>
<td>matrix with a specified</td>
<td>469</td>
</tr>
<tr>
<td>of recurrence relation</td>
<td>221</td>
</tr>
<tr>
<td>of tridiagonal system</td>
<td>665</td>
</tr>
<tr>
<td>Characteristics of partial differential equations</td>
<td>1024–1026</td>
</tr>
<tr>
<td>Chebyshev acceleration in successive over-relaxation (SOR)</td>
<td>1064</td>
</tr>
<tr>
<td>Chebyshev approximation</td>
<td>95, 156, 232–239</td>
</tr>
<tr>
<td>Clenshaw-Curtis quadrature</td>
<td>241</td>
</tr>
<tr>
<td>Clenshaw’s recurrence formula</td>
<td>236</td>
</tr>
<tr>
<td>coefficients for</td>
<td>234</td>
</tr>
<tr>
<td>contrasted with Padé approximation</td>
<td>245</td>
</tr>
<tr>
<td>derivative of approximated function</td>
<td>232, 240, 241</td>
</tr>
<tr>
<td>economization of series</td>
<td>243–245</td>
</tr>
<tr>
<td>even function</td>
<td>237</td>
</tr>
<tr>
<td>fast cosine transform and</td>
<td>625</td>
</tr>
<tr>
<td>for error function</td>
<td>264</td>
</tr>
<tr>
<td>gamma functions</td>
<td>285</td>
</tr>
<tr>
<td>integral of approximated function</td>
<td>240, 241</td>
</tr>
<tr>
<td>odd function</td>
<td>237</td>
</tr>
<tr>
<td>polynomial fits derived from</td>
<td>241, 243, 248</td>
</tr>
<tr>
<td>rational function</td>
<td>247–251</td>
</tr>
<tr>
<td>Remes exchange algorithm for filter</td>
<td>669</td>
</tr>
<tr>
<td>Chebyshev polynomials</td>
<td>183, 187, 233–239</td>
</tr>
<tr>
<td>basis functions for spectral methods</td>
<td>1085</td>
</tr>
<tr>
<td>continuous orthonormality</td>
<td>233</td>
</tr>
<tr>
<td>discrete orthonormality</td>
<td>233</td>
</tr>
<tr>
<td>explicit formulas for</td>
<td>233</td>
</tr>
<tr>
<td>formula for (x^k) in terms of</td>
<td>233</td>
</tr>
<tr>
<td>Check digit (decimal)</td>
<td>1173</td>
</tr>
<tr>
<td>Checksum 1160, 1168–1175</td>
<td></td>
</tr>
<tr>
<td>cyclic redundancy (CRC)</td>
<td>1168–1173</td>
</tr>
<tr>
<td>Chemical reaction networks</td>
<td>946–954</td>
</tr>
<tr>
<td>Chi-by-eye</td>
<td>774</td>
</tr>
<tr>
<td>Chi-square fitting see Fitting; Least-squares fitting</td>
<td></td>
</tr>
<tr>
<td>Chi-square probability function</td>
<td>330, 331, 732, 778, 779, 1003</td>
</tr>
<tr>
<td>as boundary of confidence region</td>
<td>812</td>
</tr>
<tr>
<td>deviates from</td>
<td>371</td>
</tr>
<tr>
<td>Chi-square test</td>
<td>731–734</td>
</tr>
<tr>
<td>and confidence limit estimation</td>
<td>812</td>
</tr>
<tr>
<td>chi-by-eye</td>
<td>774</td>
</tr>
<tr>
<td>chi-square-gamma test</td>
<td>735</td>
</tr>
<tr>
<td>degrees of freedom</td>
<td>732, 733</td>
</tr>
<tr>
<td>for binned data</td>
<td>731–734</td>
</tr>
<tr>
<td>for contingency table</td>
<td>742–745</td>
</tr>
<tr>
<td>for inverse problems</td>
<td>1003</td>
</tr>
<tr>
<td>for straight line fitting</td>
<td>781</td>
</tr>
<tr>
<td>for straight line fitting, errors in both coordinates</td>
<td>785</td>
</tr>
<tr>
<td>for two binned data sets</td>
<td>732</td>
</tr>
<tr>
<td>goodness-of-fit</td>
<td>780</td>
</tr>
<tr>
<td>how much (\Delta \chi^2) is significant</td>
<td>816</td>
</tr>
<tr>
<td>least-squares fitting</td>
<td>778–780</td>
</tr>
<tr>
<td>and likelihood ratio test</td>
<td>735</td>
</tr>
<tr>
<td>modified Neyman</td>
<td>735</td>
</tr>
<tr>
<td>nonlinear models</td>
<td>799</td>
</tr>
<tr>
<td>small numbers of counts</td>
<td>734, 735</td>
</tr>
<tr>
<td>for two binned data sets</td>
<td>735</td>
</tr>
<tr>
<td>unequal size samples</td>
<td>733</td>
</tr>
<tr>
<td>Chirp signal</td>
<td>672</td>
</tr>
<tr>
<td>Cholesky decomposition</td>
<td>100–102, 525, 568</td>
</tr>
</tbody>
</table>
and covariance structure 378, 379
decorrelating random variables 379
multivariate Gaussian distribution 847, 848
operation count 100
pivoting 101
solution of normal equations 543, 790, 791
sparse decomposition 544, 548
Circle
inscribed or circumscribed 1112
largest empty 1147
random point on 1131
Circulant 700
Circumscribed circle (circumcircle) 1112
CLAPACK 567
Class 17–24
abstract base (ABC) 24, 33, 34, 87, 114, 703, 874
base class 23
derived 23
error class 30
inheritance 23, 24
is-a relationship 23
matrix 24–29
partial abstraction via 24
prerequisite relationship 23
public vs. private 17
prefix _I, _O, _IO 26, 32
templated 22, 33, 34
vector 24–29
see also Object
Class library 2
Classification 840–898
kernel methods 889, 892
support vector machine 883–898
Clenshaw-Curtis quadrature 156, 241, 624, 625
Clenshaw’s recurrence formula 219, 222, 223
for Chebyshev polynomials 236
stability 223
Clock, program timing routine 355
Clocking errors 1172
Codes
binary block codes 851
codeword 851
correcting bit errors 855
error-correcting 851–855
Golay code 852
Hamming code 852
Hamming distance 851, 1168
hard-decision decoding 853
linear codes 851
minimal trellis 853
perfect code 852
Reed-Solomon 852, 855
soft-decision decoding 853
syndrome decoding 852
trellis 853, 856
turbo codes 855
Viterbi decoding 854
Coding
arithmetic 755, 1181–1185
checksums 1168–1175
compression 754, 756
decoding a Huffman-encoded message 1178
Huffman 713, 1175–1180
run-length 1180
variable length code 1176
Ziv-Lempel 1176
see also Arithmetic coding; Huffman coding
Coefficients
binomial 258
for Gaussian quadrature 179, 180
for Gaussian quadrature, nonclassical weight
function 189–191, 995
for quadrature formulas 157–162, 995
Column operations on matrix 43, 45
Column totals 743, 759
Combinatorial minimization see Annealing
Comité Consultatif International Télégraphique et
Téléphonique (CCITT) 1171, 1180
Communications protocol 1168
Comparison function for rejection method 366
Compiler
check on via constructors 36
tested 5
Complementary error function see Error function
Complete elliptic integral see Elliptic integrals
Complex arithmetic 225, 226
access vector as if complex 613, 620
avoidance of in path integration 253
Complex type 25
cubic equations 228, 229
linear equations 55
quadratic equations 227
Complex error function 302
Complex plane
fractal structure for Newton’s rule 462
path integration for function evaluation
251–254, 318
poles in 124, 210, 252, 256, 670, 682, 922
Complex systems of linear equations 55
Compression of data 713, 715, 1160, 1175–1185
Computational geometry
floating point arithmetic in 1098
Computer graphics 1097
Computer vision 1097
Concordant pair for Kendall’s tau 751
Condition number 69, 89, 791, 793
Conditional entropy 758–761
Confidence level 810, 811, 814–816
Confidence limits
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>and chi-square 811</td>
</tr>
<tr>
<td>bootstrap method 809, 810</td>
</tr>
<tr>
<td>by Monte Carlo simulation 807–810</td>
</tr>
<tr>
<td>confidence region, confidence interval 810, 811</td>
</tr>
<tr>
<td>from singular value decomposition (SVD) 816, 817</td>
</tr>
<tr>
<td>Confluent hypergeometric function 254, 287</td>
</tr>
<tr>
<td>Conjugate directions 509, 511, 512, 516</td>
</tr>
<tr>
<td>Conjugate gradient method and wavelets 716</td>
</tr>
<tr>
<td>conjugate 88</td>
</tr>
<tr>
<td>compared to variable metric method 521</td>
</tr>
<tr>
<td>elliptic partial differential equations 1030</td>
</tr>
<tr>
<td>for minimization 489, 515–520, 1011, 1020</td>
</tr>
<tr>
<td>for sparse system 87–92, 716</td>
</tr>
<tr>
<td>minimum residual method 89</td>
</tr>
<tr>
<td>preconditioner 89, 90</td>
</tr>
<tr>
<td>Conservative differential equations 928, 930</td>
</tr>
<tr>
<td>const</td>
</tr>
<tr>
<td>correctness 26, 31, 32</td>
</tr>
<tr>
<td>protects container, not contents 31, 32</td>
</tr>
<tr>
<td>to protect data 32</td>
</tr>
<tr>
<td>Constellation in Viterbi decoding 855</td>
</tr>
<tr>
<td>Constrained linear inversion method 1006</td>
</tr>
<tr>
<td>Constrained linear optimization see Linear programming</td>
</tr>
<tr>
<td>Constrained optimization 487</td>
</tr>
<tr>
<td>Constraints</td>
</tr>
<tr>
<td>deterministic 1011–1013</td>
</tr>
<tr>
<td>linear 526, 530</td>
</tr>
<tr>
<td>Constructor 18, 27</td>
</tr>
<tr>
<td>Container, STL 421</td>
</tr>
<tr>
<td>Contingency coefficient C 743, 744</td>
</tr>
<tr>
<td>Contingency table 741–745, 753, 758, 759</td>
</tr>
<tr>
<td>statistics based on chi-square 742–745</td>
</tr>
<tr>
<td>statistics based on entropy 758–761</td>
</tr>
<tr>
<td>Continue statement 15</td>
</tr>
<tr>
<td>Continued fraction 206–209</td>
</tr>
<tr>
<td>and recurrence relation 222</td>
</tr>
<tr>
<td>Bessel functions 283, 284, 288</td>
</tr>
<tr>
<td>convergence criterion 208</td>
</tr>
<tr>
<td>equivalence transformation 208</td>
</tr>
<tr>
<td>evaluation 206–209</td>
</tr>
<tr>
<td>evaluation along with normalization condition 208</td>
</tr>
<tr>
<td>even and odd parts 208, 260, 267, 298, 301</td>
</tr>
<tr>
<td>exponential integral 267</td>
</tr>
<tr>
<td>Fresnel integral 298</td>
</tr>
<tr>
<td>incomplete beta function 270</td>
</tr>
<tr>
<td>incomplete gamma function 260</td>
</tr>
<tr>
<td>Lentz’s method 207, 260</td>
</tr>
<tr>
<td>modified Lentz’s method 208</td>
</tr>
<tr>
<td>Pincherle’s theorem 222</td>
</tr>
<tr>
<td>ratio of Bessel functions 287</td>
</tr>
<tr>
<td>rational function approximation 207, 260</td>
</tr>
<tr>
<td>recurrence for evaluating 207, 208</td>
</tr>
<tr>
<td>sine and cosine integrals 301</td>
</tr>
<tr>
<td>Stee’d’s method 207</td>
</tr>
<tr>
<td>tangent function 206</td>
</tr>
<tr>
<td>typography for 206</td>
</tr>
<tr>
<td>Continuous variable (statistics) 741</td>
</tr>
<tr>
<td>Control structures and scope 21</td>
</tr>
<tr>
<td>Convergence</td>
</tr>
<tr>
<td>accelerated, for series 177, 211–218</td>
</tr>
<tr>
<td>basin of 461, 463</td>
</tr>
<tr>
<td>criteria for 448, 493, 503, 598, 599, 802, 969</td>
</tr>
<tr>
<td>eigenvalues accelerated by shifting 585</td>
</tr>
<tr>
<td>exponential 174–178, 180, 238, 239, 1083–1096</td>
</tr>
<tr>
<td>golden ratio 449, 500</td>
</tr>
<tr>
<td>hyperlinear (series) 211</td>
</tr>
<tr>
<td>linear 448, 495</td>
</tr>
<tr>
<td>linear (series) 211</td>
</tr>
<tr>
<td>logarithmic (series) 211</td>
</tr>
<tr>
<td>Markov model 858</td>
</tr>
<tr>
<td>of algorithm for π 1185</td>
</tr>
<tr>
<td>of golden section search 494, 495</td>
</tr>
<tr>
<td>of Levenberg-Marquardt method 802</td>
</tr>
<tr>
<td>of QL method 584, 585</td>
</tr>
<tr>
<td>of Ridders’ method 452</td>
</tr>
<tr>
<td>quadratic 64, 452, 459, 511, 512, 522, 1185</td>
</tr>
<tr>
<td>rate 448, 454, 457, 459</td>
</tr>
<tr>
<td>recurrence relation 222</td>
</tr>
<tr>
<td>series vs. continued fraction 206</td>
</tr>
<tr>
<td>spectral radius and 1061, 1066</td>
</tr>
<tr>
<td>Corrections, user-defined 31</td>
</tr>
<tr>
<td>Convex hull 1097, 1132, 1146</td>
</tr>
<tr>
<td>Convex sets, use in inverse problems 1011–1013</td>
</tr>
<tr>
<td>Convolution</td>
</tr>
<tr>
<td>and polynomial interpolation 129</td>
</tr>
<tr>
<td>denoted by asterisk 602</td>
</tr>
<tr>
<td>finite impulse response (FIR) 642, 643</td>
</tr>
<tr>
<td>multiple precision arithmetic 1188</td>
</tr>
<tr>
<td>multiplication as 1188</td>
</tr>
<tr>
<td>necessity for optimal filtering 645</td>
</tr>
<tr>
<td>of functions 602, 616, 617, 631</td>
</tr>
<tr>
<td>of large data sets 646, 647</td>
</tr>
<tr>
<td>overlap-add method 647</td>
</tr>
<tr>
<td>overlap-save method 646</td>
</tr>
<tr>
<td>relation to wavelet transform 700, 701</td>
</tr>
<tr>
<td>theorem 602, 641, 656</td>
</tr>
<tr>
<td>theorem, discrete 642, 643</td>
</tr>
<tr>
<td>treatment of end effects 643</td>
</tr>
<tr>
<td>use of FFT 641–647</td>
</tr>
<tr>
<td>wraparound problem 643</td>
</tr>
<tr>
<td>Cooley-Tukey FFT algorithm 616</td>
</tr>
<tr>
<td>Cornwall-Evans algorithm 1021</td>
</tr>
<tr>
<td>Corporate promotion ladder 427</td>
</tr>
<tr>
<td>Corrected distance transformation 873</td>
</tr>
<tr>
<td>Corrected two-pass algorithm 724</td>
</tr>
<tr>
<td>Correction, in multigrid method 1067</td>
</tr>
<tr>
<td>Correlation coefficient (linear) 745–748</td>
</tr>
<tr>
<td>Correlation function 602, 617</td>
</tr>
<tr>
<td>and Fourier transforms 602, 617</td>
</tr>
<tr>
<td>autocorrelation 602, 649, 673–675</td>
</tr>
<tr>
<td>theorem 602, 648</td>
</tr>
<tr>
<td>three-point 604</td>
</tr>
<tr>
<td>treatment of end effects 648</td>
</tr>
</tbody>
</table>
using FFT 648, 649
Wiener-Khinchin theorem 602, 682
Correlation, statistical 721, 741
among parameters in a fit 782, 793
Kendall’s tau 749, 751–754
linear correlation coefficient 745–748, 783
linear related to least-squares fitting 745, 783
nonparametric or rank statistical 748–754
Spearman rank-order coefficient 749–751
sum squared difference of ranks 749
uncertainty coefficient 761
Coset leader 852
Cosine function, recurrence 219
Cosine integral 297, 300–302
continued fraction 301
routine for 301
series 301
Cosine transform see Fast Fourier transform (FFT); Fourier transform
Coulomb wave function 254, 283
Counts, small numbers of 734, 735
Courant condition 1034, 1036, 1038–1040, 1042
multidimensional 1051
Courant-Friedrichs-Lewy stability criterion see Courant condition
Covariance
a priori 824
from singular value decomposition (SVD) 817
in general linear least squares 790, 791, 794
in nonlinear models 802
in straight line fitting 782
matrix, and normal equations 790
matrix, Cholesky decomposition 101
matrix, is inverse of Hessian matrix 802
matrix, of errors 1003, 1015
matrix, when it is meaningful 812, 813
relation to chi-square 812–816
CR method see Cyclic reduction (CR)
Cramer’s V 743, 744
Crank-Nicolson method 1045, 1049, 1051, 1052
Cray, Seymour 1163
CRC (cyclic redundancy check) 1168–1173
CRIC-12 1171
Critical (Nyquist) sampling 605, 607, 653
Cross © (denotes matrix outer product) 78
Crossstabilization analysis 742
see also Contingency table
Crout’s algorithm 49, 59
Cubic equations 227–229, 461
Cubic spline interpolation 120–124
see also Spline
Cumulative Distribution Function (cdf) 435
Curse of dimensionality 556, 891
Curvature matrix see Hessian matrix
Curve interpolation 147
Cycle, in multigrid method 1069
Cyclic Jacobi method 573
Cyclic reduction (CR) 224, 1054, 1057, 1058
Cyclic redundancy check (CRC) 1168–1173
Cyclic tridiagonal systems 79, 80
D.C. (direct current) 602
Danielson-Lanzos lemma 609, 610, 638
Data
continuous vs. binned 731
entropy 754–761, 1176
essay on 720
fitting 773–838
fraction 780
glitches in 777
iid (independent and identically distributed) 809
linearly separable 884
missing data points 150–154
modeling 773–838
smoothing 721, 766–772
statistical tests 720–772
unevenly or irregularly sampled 139–154, 685, 690, 771
use of CRCs in manipulating 1169
windowing 655–667
see also Statistical tests
Data compression 713, 715, 1160
arithmetic coding 1181–1185
cosine transform 625
Huffman coding 713, 1175–1181
linear predictive coding (LPC) 679–681
lossless 1175
Data Encryption Standard (DES) 358–361
Data type 8
DAUB4 700, 702, 706, 707, 711, 715
DAUB6 702
DAUB20 706
Daubechies wavelet coefficients 700–702, 704, 706–708, 715
Davidson-Fletcher-Powell algorithm 490, 521, 522
Dawson’s integral 302, 304, 717
approximation for 303
routine for 303
DE rule 174
implementation 175
infinite range 176
Decoding
Berlekamp-Massey algorithm for Reed-Solomon code 852
directed graph 556, 850
hard-decision 853
hard-decision vs. soft-decision 855
maximum likelihood 854
Reed-Solomon codes 855
soft-decision decoding 853
syndrome decoding 852
Turbo codes 855
Viterbi algorithm 854
Viterbi, compared to hidden Markov model 867, 868
Decomposition see Cholesky decomposition; LU decomposition; QR decomposition; Singular value decomposition (SVD)
Deconvolution 645–647, 650
see also Convolution; Fast Fourier transform (FFT); Fourier transform

Decorrelating random variables 379

Defect, in multigrid method 1067
Deferred approach to the limit see Richardson’s deferred approach to the limit
Deflation
of matrix 585
of polynomials 464–466, 471

Degeneracy
kernel 992
linear algebraic equations 73, 793
minimization principle 1002

Degrees of freedom 732, 733, 778, 779, 813–815

Delaunay triangulation 1097, 1131–1149
applications of 1141–1149
incremental constructions 1134
interpolation using 1141
largest minimum angle property 1134
minimum spanning tree 1147
not minimum weight 1134

Delone, B.N. see Delaunay Triangulation

Dense output, for differential equations 904, 915, 927

Dependencies, program 4
Dependency graph or matrix 949

Derivatives
approximation by sinc expansion 178
computation via Chebyshev approximation 232, 240, 241
computation via Savitzky-Golay filters 232, 769
matrix of first partial see Jacobian determinant
matrix of second partial see Hessian matrix
numerical computation 229–232, 480, 769, 936, 960, 978
of polynomial 202
use in optimization 499–502
Derived class 23

DES see Data Encryption Standard

Descending transformation, elliptic integrals 310

Descent direction 478, 484, 522

Descriptive statistics 720–772
see also Statistical tests
Design matrix 768, 788, 1002
Design of experiments 410
Detailed balance equation 825–827
Determinant 39, 54, 55
Devek 535

Deviates, random see Random deviates

DFP algorithm see Davidon-Fletcher-Powell algorithm

Diagonal dominance 57, 802, 987, 1060
Diagonal rational function 125
Diehard test, for random numbers 345
Difference equations, finite see Finite difference equations (FDEs)
Difference operator 212
Differential equations 899–954
accuracy vs. stability 907, 931
Adams-Bashforth-Moulton schemes 943
adaptive stepsize control 901, 910–921, 924–926, 929, 939, 941, 943, 944, 946
algebraically difficult sets 970
backward Euler’s method 932
Bader-Deuflhard method for stiff 940
boundary conditions 900, 955, 962, 977
Bulirsch-Stoer method 252, 318, 900, 901, 909, 921–928, 942
Bulirsch-Stoer method for conservative equations 928, 930
comparison of methods 900, 901, 942, 946, 957
conservative 928, 930
dense output 904, 915, 927
discreteness effects 946–954
eigenvalue problem 958, 973, 977–981
embedded Runge-Kutta method 911, 936
equivalence of multistep and multivalue methods 945
Euler’s method 900, 907, 931
forward Euler’s method 931
free boundary problem 958, 983
global vs. local error 914
high-order implicit methods 934
implicit differencing 932, 933, 944
initial value problems 900
integrating to an unknown point 916
internal boundary conditions 983, 984
internal singular points 983, 984
interpolation on right-hand sides 115
Kaps-Rentrop method for stiff 934
local extrapolation 911
modified midpoint method 922, 923
multistep methods 900, 942–946
multivalue methods 942–946
Nordsieck method 944
order of method 907, 922
path integration for function evaluation 251–254, 318
predictor-corrector methods 900, 909, 934, 942–946
r.h.s. independent of x 932, 934
reduction to first-order sets 899, 956
relaxation method 957, 964–970
relaxation method, example of 971, 973–977
Rosenbrock methods for stiff 934–940
Runge-Kutta method 900, 907–921, 934, 942, 1096
Runge-Kutta method, high-order 907–910, 912
scaling stepsize to required accuracy 913, 914
second order 928, 930
semi-implicit differencing 934
semi-implicit Euler method 934, 940
semi-implicit extrapolation method 934, 935, 940, 941
semi-implicit midpoint rule 940
shooting method 956, 959–961
shooting method, example 971, 977–981
similarity to Volterra integral equations 993
singular points 921, 962, 983, 984
solving with sinc expansions 178
step doubling 910
stepsize control 901, 910–920, 924, 929, 938, 941, 944, 946
stepsize, danger of too small 920
stiff 901, 931–941
stiff methods compared 941
stochastic simulation 946–954
Stoermer’s rule 928
see also Partial differential equations;
Two-point boundary value problems
Differentiation matrix 1091
routine for 1092
Diffusion equation 1024, 1043–1049, 1059
Crank-Nicolson method 1045, 1049, 1051, 1052
forward time centered space (FTCS) 1044, 1046, 1059
implicit differencing 1045
multidimensional 1051, 1052
Digamma function 267
Digital filtering see Filter
Dihedral angle 1116
Dihedral group D_5 1174
Dimensionality, curse of 556, 891
Dimensions (units) 801
Diminishing increment sort 422
Dingbats, Zapf 1162
Dirac delta function 700, 987
Direct method see Periodogram
Direct methods for linear algebraic equations 40
Direct product see Outer product of matrices
Directed graph
Markov model 856
stages and states 556, 850
transition matrix 856
transition probability 856
trellis 856
Viterbi decoding 850
Direction numbers, Sobol’s sequence 404
Direction of largest decrease 512
Direction set methods for minimization 489, 509–514
Dirichlet boundary conditions 1026, 1045, 1055, 1061, 1063
Discordant pair for Kendall’s tau 751
Discrete convolution theorem 642, 643
Discrete Fourier transform (DFT) 605–608
approximation to continuous transform 607, 608
see also Fast Fourier transform (FFT)
Discrete optimization 536, 549
Discrete prolate spheroidal sequence (dpss) 662–667
Discretization error 173
Discriminant 227, 572
Dispersion 1036
DISPO see Savitzky-Golay filters
Dissipation, numerical 1035
Distance matrix 869
Distributions, statistical see Statistical distributions
Divergent series 210, 211, 216
Divide-and-conquer method 589
Division
complex 226
integer vs. floating 8
multiple precision 1190
of polynomials 204, 464, 471
dn function 316
DNA sequence 559–562, 869, 884
Do-while iteration 15
Dogleg step methods 486
Domain of integration 196
Dominant solution of recurrence relation 220
Dormand-Prince parameters 912, 920
Dot ·
denotes matrix multiplication 37
denotes row or column sums 759
Deub 25
Double exponential error distribution 820
Double root 443
Doubling rate 756
Downhill simplex method see Simplex, method of
Nelder and Mead
DP see Dynamic programming
dpss (discrete prolate spheroidal sequence) 662–667
Dual problem 538, 886
Dual viewpoint, in multigrid method 1077
Duality gap 538
Duplication theorem, elliptic integrals 311
DWT (discrete wavelet transform) see Wavelet transform
Dynamic programming 555–562
Bellman-Dijkstra-Viterbi algorithm 556, 850
directed graph 556, 850
e-folding rate 756
Eardley’s equivalence class method 440
Economization of power series 243–245
Eigensystems 563–599
and integral equations 987, 992
balancing matrix 592, 594
bounds on eigenvalues 64
calculation of few eigenvectors or eigenvalues 568, 598
canned routines 567
characteristic polynomial 563, 583
completeness 564, 565
defective 564, 591, 598, 599
deflation 585
degenerate eigenvalues 563, 565
divide-and-conquer method 589
eigenvalues 563
elimination method 567, 594
factorization method 567
fast Givens reduction 578
generalized eigenproblem 568, 569
Givens reduction 578–583
Givens transformation 587
Hermitian matrix 590
Hessenberg matrix 567, 585, 590–595, 598
Householder transformation 567, 578–584, 587, 590, 594
ill-conditioned eigenvalues 591, 592
implicit shifts 586–589
invariance under similarity transform 566
inverse iteration 568, 584, 589, 597–599
Jacobi transformation 567, 570–576, 578, 590, 599
left eigenvalues 565
list of tasks 568
Markov model transition matrix 858, 859
MRRR algorithm 589, 599
multiple eigenvalues 599
nonlinear 568, 569
nonsymmetric matrix 590–595
operation count of balancing 592
operation count of Givens reduction 578
operation count of Householder reduction 582
operation count of inverse iteration 598, 599
operation count of Jacobi method 573, 574
operation count of QL method 585, 588
operation count of QR method for Hessenberg matrices 596
operation count of reduction to Hessenberg form 594
orthogonality 564
polynomial roots and 469
QL method 584–586, 590
QR method 67, 567, 571, 584–586
QR method for Hessenberg matrices 596
real symmetric matrix 188, 576, 577, 582, 992
reduction to Hessenberg form 594, 595
relation to singular value decomposition (SVD) 569, 570
right eigenvalues 565
shifting eigenvalues 563, 585, 596
special matrices 568
termination criterion 598, 599
tridiagonal matrix 567, 576, 577, 583–589, 598
Eigenvalue and eigenvector, defined 563
Eigenvalue problem for differential equations 958, 973, 977–981
Eigenvalues and polynomial root finding 469
EISPACK 567
Electromagnetic potential 631
Elimination see Gaussian elimination
Ellipse in confidence limit estimation 811, 814, 815
Elliptic integrals 309–316, 1185
addition theorem 310
Carlson’s forms and algorithms 310–316
Cauchy principal value 311
duplication theorem 311
Legendre 309, 314, 315
routines for 311–315
symmetric form 309, 310
Weierstrass 310
Elliptic partial differential equations 1024
alternating-direction implicit method (ADI) 1065, 1066, 1185
analyze/factorize/operate package 1030
biconjugate gradient method 1030
boundary conditions 1026
comparison of rapid methods 1058
conjugate gradient method 1030
cyclic reduction 1054, 1057, 1058
Fourier analysis and cyclic reduction (FACR) 1053–1058
Gauss-Seidel method 1060, 1061, 1068, 1078
Jacobi’s method 1060, 1061, 1068
matrix methods 1028, 1030
multigrid method 1030, 1066–1083
rapid (Fourier) method 1029, 1054–1057
relaxation method 1028, 1059–1066
spectral methods 1096
successive over-relaxation (SOR) 1061–1066, 1070
EM algorithm see Expectation-maximization algorithm
Embedded networks 1168
Embedded Runge-Kutta method 911, 936
Encryption 358
Entropy 754–761, 1006, 1176
chain rule 759
conditional 758–761
of data 1017
relative 756
EOM (end of message) 1178, 1181
epsilon (ε) algorithm 212
Equality constraints 526, 528
Equations cubic 227–229, 461
differential see Differential equations
normal (fitting) 768, 789–793, 1007
quadratic 10, 227–229
see also Differential equations; Partial differential equations; Root finding
Equilibrium, physical 825
Equivalence classes 419, 439–441
Equivalence transformation 208
Ergodic
Markov model 858
Ergodic property 825
Error 8–12
checksums for preventing 1172
clocking 1172
discretization 173
double exponential distribution 820
in multigrid method 1067
interpolation 113
local truncation 1077, 1078
Lorentzian distribution 820
Fast Fourier transform (FFT) 608–616, 640, 1160
 alternative algorithms 615, 616
 applications 640–719
 approximation to continuous transform 608
 bare routine for 611
 bit reversal 610, 638
 butterfly 360, 361, 610
 Clenshaw-Curtis quadrature 241
 convolution 616, 631, 641–647, 1189
 convolution of large data sets 646, 647
 Cooley-Tukey algorithm 616
 correlation 648, 649
 cosine transform 241, 624–627, 1056
 cosine transform, second form 625, 1057
 Danielson-Lanczos lemma 609, 610, 638
 data sets not a power of 2 616
 data smoothing 766, 767
 data windowing 655–667
 decimation-in-frequency algorithm 616
 decimation-in-time algorithm 615
 decomposition into blocks 614
 differentiation matrix using 1092
 discrete autocorrelation 649
 discrete convolution theorem 642, 643
 discrete correlation theorem 648
 double frequency 690
 endpoint corrections 694
 external storage 637, 638
 figures of merit for data windows 658
 filtering 667–672
 FIR filter 668, 669
 for quadrature 156
 for spherical harmonic transforms 296
 four-step framework 615
 Fourier integrals 692–699
 Fourier integrals, infinite range 699
 history 609
 IIR filter 668–672
 image processing 1010, 1012
 integrals using 156
 inverse of sine transform 623
 large data sets 637, 638
 leakage 655, 656
 Lomb periodogram and 689
 memory-local algorithm 638
 multidimensional 627–630
 multiple precision arithmetic 1185
 multiple precision multiplication 1189
 number-theoretic transforms 616
 of real data in 2D and 3D 631–637
 of real functions 617–627, 631–637
 of single real function 618–620
 of two real functions simultaneously 617, 618
 operation count 609, 610
 optimal (Wiener) filtering 649–652, 673, 674
 order of storage in 611
 parallel 614
 partial differential equations 1029, 1054–1057
 periodicity of 608
 periodogram 653–656, 681, 683
 power spectrum estimation 652–667
 related algorithms 615, 616
 Sande-Tukey algorithm 616
 sine transform 620–623, 1055
 Singleton’s algorithm 637, 638
 six-step framework 615
 spectral methods 1086
 treatment of end effects in convolution 643
 treatment of end effects in correlation 648
 Tukey’s trick for frequency doubling 690
 two real functions simultaneously 617
 use in smoothing data 766, 767
 virtual memory machine 638
 Winograd algorithms 616
 zoom transforms 615
 see also Discrete Fourier transform (DFT);
 Fourier transform; Spectral density

Fast Legendre transform 295, 297
Fast multipole methods 140, 1150
FASTA (software) 562
Faure sequence 404
Fax (facsimile) Group 3 standard 1180
Feasible vector 526, 538
 basis vector 528
Fermi-Dirac integral 178
FFT see Fast Fourier transform (FFT)
Field, in data record 428
Figure-of-merit function 773
FILE... (ANSI C macro) 30
Fill-in, sparse linear equations 59, 76, 535, 544
Filon’s method 698
Filter 667–672
 acausal 668
 bilinear transformation method 670, 672
 by fast Fourier transform (FFT) 637, 649,
 667–672
 causal 668, 767, 770
 characteristic polynomial 670
 data smoothing 766
 digital 667–672
 DISPO 767
 finite impulse response (FIR) 642, 643, 668,
 669
 homogeneous modes of 670
 infinite impulse response (IIR) 668–672, 681
 Kalman 824
 linear 668–672
 low-pass for smoothing 766
 nonrecursive 668
 optimal (Wiener) 645, 649–652, 673, 674,
 767
 quadrature mirror 701, 708
 realizable 668, 670, 671
 recursive 668–672, 681
 Remes exchange algorithm 669
 Savitzky-Golay 232, 766–772
 stability of 670, 671
 time domain 667–672
Fine-to-coarse operator 1068
Finite difference equations (FDEs) 964, 970, 981
accuracy of 1085
alternating-direction implicit method (ADI) 1052, 1053, 1065, 1066
art, not science 1035
Cayley’s form for unitary operator 1049
Courant condition 1034, 1036, 1038, 1042
Courant condition (multidimensional) 1051
Crank-Nicolson method 1045, 1049, 1051, 1052
eigenmodes of 1033, 1034
explicit vs. implicit schemes 1033
forward Euler 1032
forward time centered space (FTCS) 1032, 1044, 1049, 1059
implicit scheme 1045
in relaxation methods 964
Lax method 1034–1036, 1042
Lax method (multidimensional) 1050, 1051
mesh drifting instability 1040
numerical derivatives 229
partial differential equations 1027
relation to spectral methods 1093
staggered leapfrog method 1038, 1039
two-step Lax-Wendroff method 1040
upwind differencing 1037, 1042
see also Partial differential equations
Finite element methods 132, 1030
Finite impulse response (FIR) 642, 643
FIR (finite impulse response) filter 668, 669
First-class objects 397
Fisher discriminant algorithm 892
Fisher’s z-transformation 746
Fitting 773–838
basis functions 788
by Chebyshev approximation 234
by rational Chebyshev approximation 247–251
chi-square 778–780
confidence levels from singular value decomposition (SVD) 816, 817
confidence levels related to chi-square values 812–816
confidence limits on fitted parameters 807–817
covariance matrix not always meaningful 774, 812
degeneracy of parameters 797
exponential, an 797
freezing parameters in 791, 824
Gaussians, a sum of 805
general linear least squares 788–798
how much Δx^2 is significant 816
K–S test, caution regarding 740
Kalman filter 824
kriging 836–838
least squares 776–780
Legendre polynomials 797
Levenberg-Marquardt method 801–806, 1022
linear regression 780–785
Markov chain Monte Carlo 824–835
maximum likelihood estimation 777, 818
Monte Carlo simulation 740, 779, 807–810
multidimensional 798, 836–838
nonlinear models 799–806
nonlinear models, advanced methods 806
nonlinear problems that are linear 797
nonnormal errors 781, 812, 818–824
of sharp spectral features 682
polynomial 94, 129, 241, 243, 768, 788, 797
robust methods 818–824
standard (probable) errors on fitted parameters 781, 782, 786, 787, 790, 794, 795, 807–817
straight line 780–785, 822–824
straight line, errors in both coordinates 785–787
see also Error; Least-squares fitting; Maximum likelihood estimate; Robust estimation
Five-point difference star 1071
Fixed point format 8
Fletcher-Powell algorithm see
 Davidon-Fletcher-Powell algorithm
 Fletcher-Reeves algorithm 489, 515–519
Floating point format 8–11, 1163–1165
care in numerical derivatives 229, 230
in computational geometry 1098
enabling exceptions 35, 575
history 1163
IEEE 9, 10, 34, 1164
little- vs. big-endian 9
NaN 34, 35
Flux-conservative initial value problems 1031–1043
FMG (full multigrid method) 1067, 1072–1076
for iteration 14
Formats of numbers 8–11, 1163–1165
Fortran 1
 INTENT attribute 26
Forward-backward algorithm
 as a sum-product algorithm 867
 Bahl-Cocke-Jelinek-Raviv algorithm 867
 belief propagation 867
 compared to Viterbi decoding 867
 hidden Markov model 861, 862, 864–867
 renormalization 862
Forward deflation 464, 465
Forward difference operator 212
Forward Euler differencing 1032
Forward Time Centered Space see FTCS
Four-step framework, for FFT 615
Fourier analysis and cyclic reduction (FACR) 1054, 1058
Fourier and spectral applications 600, 640–719
Fourier integrals
 attenuation factors 698
 endpoint corrections 694
tail integration by parts 699
use of fast Fourier transform (FFT) 692–699
Fourier series as basis functions for spectral methods 1085
Fourier transform 110, 600–640
 aliasing 606, 685
 approximation of Dawson’s integral 303
 autocorrelation 602
 basis functions compared 621
 contrasted with wavelet transform 699, 700, 711
 convolution 602, 616, 617, 631, 641–647, 1189
 correlation 602, 617, 649
 cosine transform 241, 624–627, 1056
 cosine transform, second form 625, 1057
 critical sampling 605, 653, 655
 decomposition into blocks 614
 definition 600
 discrete Fourier transform (DFT) 233, 236, 605–608
 Gaussian function 717, 718
 image processing 1010, 1012
 infinite range 699
 inverse of discrete Fourier transform 608
 method for partial differential equations 1054–1057
 missing data 685
 missing data, fast algorithm 689–692
 Nyquist frequency 605, 607, 632, 653, 655, 685
 optimal (Wiener) filtering 649–652, 673, 674
 Parseval’s theorem 602, 603, 608, 654
 power spectral density (PSD) 602, 603
 power spectrum estimation by FFT 652–667
 power spectrum estimation by maximum entropy method 681–684
 properties of 601
 sampling rate 605
 sampling theorem 605, 653, 655, 717–719
 scalings of 601
 significance of a peak in 686
 sine transform 620–623, 1055
 symmetries of 601
 uneven sampling, fast algorithm 689–692
 unevenly sampled data 685–692
 wavelets and 707, 708
 Wiener-Khinchin theorem 602, 674, 682
 see also Fast Fourier transform (FFT); Spectral density
Fractal region 462
Fractional step methods 1052
Fredholm alternative 987
Fredholm equations 986
 eigenvalue problems 987, 992
 error estimate in solution 991
 first kind 986
 Fredholm alternative 987
 homogeneous vs. inhomogeneous 987
 homogeneous, second kind 991
 ill-conditioned 987
 infinite range 995
 inverse problems 987, 1001–1006
 kernel 986
 nonlinear 988
 Nyström method 989–992, 995
 product Nyström method 995
 second kind 987–992
 subtraction of singularity 996
 symmetric kernel 992
 with singularities 995–1000
 with singularities, worked example 999, 1000
 see also Inverse problems
Frequency domain 600
Frequency spectrum see Fast Fourier transform (FFT)
Frequentist, contrasted with Bayesian 774
Fresnel integrals 297–300
 asymptotic form 298
 continued fraction 298
 routine for 299
 series 298
Friday the 13th 7
FSAL (first-same-as-last) 913
FTCS (forward time centered space) 1032, 1044, 1049
 stability of 1033, 1044, 1060
Full approximation storage (FAS) algorithm 1076–1083
Full conditional distribution 827
Full moon 7
Full multigrid method (FMG) 1067, 1072–1076
Full Newton methods, nonlinear least squares 806
Full pivoting 43
Full weighting 1071
Function
 Airy 254, 283, 289, 291
 associated Legendre polynomial 293, 971
 autocorrelation of 602
 bandwidth limited 605
 Bessel 219, 254, 274–292
 beta 258, 259
 branch cuts of 252–254
 chi-square probability 1003
 confluent hypergeometric 254, 287
 convolution of 602, 617
 correlation of 602, 617
 Coulomb wave 254, 283
 cumulative distribution (cdf) 320–339
 Dawson’s integral 302, 304, 717
 digamma 267
 elliptic integrals 309–316, 1185
 error 264–266, 298, 302, 718, 746, 750
 error function 259
 evaluation 201–254
 evaluation by path integration 251–254, 318
 exponential integral 219, 266–269, 301
 factorial 256, 257
 Fermi-Dirac integral 178
Index

Fresnel integral 297–300
functor 21–23, 444, 459, 905
gamma 256, 257
hypergeometric 252, 318–320
incomplete beta 270–273
incomplete gamma 259–263, 732, 779
inverse cumulative distribution 320–339
inverse hyperbolic 227, 310
inverse incomplete gamma 263
inverse of \(x \log(x) \) 307–309, 335
inverse trigonometric 310
Jacobian elliptic 309, 316, 317
Kolmogorov-Smirnov probability 737, 763
Legendre polynomial 219, 293, 797
log factorial 258
logarithm 310
minimization 487–562
modified Bessel 279–283
modified Bessel, fractional order 287–289
object 21
path integration to evaluate 251–254
pathological 111, 445
probability 320–339
representations of 600
routine for plotting a 444
sine and cosine integrals 297, 300–302
sn, dn, cn 316, 317
spherical Bessel 283
spherical harmonics 292–297
spheroidal harmonic 971–981
statistical 320–339
templated 17, 22, 26
utility 17
virtual 33
Weber 254
Function object see Functor
Functional iteration, for implicit equations 943
Functor 21–23, 202, 204, 237, 240, 444, 459,
660, 905, 936, 940
FWHM (full width at half maximum) 659

\texttt{g++} 5
Gambling 755–758, 760, 761
Gamma function 256, 257
and area of sphere 1129
complex 257
incomplete see Incomplete gamma function
Gamma probability distribution 331, 332
as limiting case of beta 333
deviates from 369
relation to Poisson process 829
sum rule for deviations 370
Gauss-Chebyshev integration 180, 183, 187, 625
Gauss-Hermite integration 183, 995
abscissas and weights 185
normalization 185
Gauss-Jacobi integration 183
abscissas and weights 186
Gauss-Jordan elimination 41–46, 75
operation count 47, 54
solution of normal equations 790
storage requirements 44
Gauss-Kronrod quadrature 192, 195
Gauss-Laguerre integration 183, 995
Gauss-Legendre integration 183, 193
see also Gaussian integration
Gauss-Lobatto quadrature 191, 192, 195, 241,
624, 1089
Gauss-Markov estimation 144
Gauss-Radau quadrature 191
Gauss-Seidel method (relaxation) 1060–1062,
1068
nonlinear 1078
Gaussian transformation 310
Gaussian
Hardy’s theorem on Fourier transforms 717
multivariate 378, 379, 842, 843, 847, 848,
1006, 1129, 1130
see also Gaussian (normal) distribution
Gaussian (normal) distribution 341, 776, 778,
1004
central limit theorem 777
Cholesky decomposition of 847, 848
deviates from 364, 365, 368, 686
kurtosis of 723, 724
multivariate 813, 842
semi-invariants of 725
sum of 12 uniform 377
tails compared to Poisson 778
two-dimensional (binormal) 746
variance of skewness of 723
see also Normal (Gaussian) distribution
Gaussian elimination 46–48, 65, 71
fill-in 59, 76, 535
in reduction to Hessenberg form 594
integral equations 993
operation count 47
relaxation solution of boundary value problems 966, 984
Gaussian integration 159, 179–193, 238, 296,
995, 997, 1086–1089
and orthogonal polynomials 181, 1087
calculation of abscissas and weights 182–188
discrete orthogonality relation 1087
error estimate in solution 991
exponential convergence of 180, 1089
extensions of 191–193, 1089
for integral equations 988, 990
from known recurrence relation 188, 189
Golub-Welsch algorithm for weights and
abscissas 188
for incomplete beta function 271
for incomplete gamma function 260, 262
nonclassical weight function 189–191, 995
preassigned nodes 191
weight function \(\log x \) 190, 191
weight functions 179–181, 995
Gaussian mixture model 842–848
Gaussian process regression 144, 836–838
Gear’s method (stiff ODEs) 934, 941
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geiger counter</td>
<td>340</td>
</tr>
<tr>
<td>Gene sequencing</td>
<td></td>
</tr>
<tr>
<td>alignment algorithms</td>
<td>559-562</td>
</tr>
<tr>
<td>hidden Markov model</td>
<td>866</td>
</tr>
<tr>
<td>Generalized eigenvalue problems</td>
<td>568, 569</td>
</tr>
<tr>
<td>Generalized minimum residual method (GMRES)</td>
<td>89</td>
</tr>
<tr>
<td>Genetic algorithms</td>
<td>840</td>
</tr>
<tr>
<td>Geometric series</td>
<td>211, 214</td>
</tr>
<tr>
<td>Geophysics, use of Backus-Gilbert method</td>
<td>1016</td>
</tr>
<tr>
<td>Gerchberg-Saxton algorithm</td>
<td>1012</td>
</tr>
<tr>
<td>Ghostscript</td>
<td>1161</td>
</tr>
<tr>
<td>Gibbs sampler</td>
<td>827, 828</td>
</tr>
<tr>
<td>recommended for discrete distributions</td>
<td>828</td>
</tr>
<tr>
<td>Gilbert and Sullivan</td>
<td>920</td>
</tr>
<tr>
<td>Gillespie method</td>
<td>947</td>
</tr>
<tr>
<td>Givens reduction</td>
<td>578-583, 587</td>
</tr>
<tr>
<td>fast</td>
<td>578</td>
</tr>
<tr>
<td>operation count</td>
<td>578</td>
</tr>
<tr>
<td>Glassman, A.J.</td>
<td>229</td>
</tr>
<tr>
<td>Global optimization</td>
<td>487, 488, 549-555, 774</td>
</tr>
<tr>
<td>continuous variables</td>
<td>552-554</td>
</tr>
<tr>
<td>difficulty of</td>
<td>803</td>
</tr>
<tr>
<td>Globally convergent minimization</td>
<td>521-525</td>
</tr>
<tr>
<td>root finding</td>
<td>474, 477-486, 959, 960, 963</td>
</tr>
<tr>
<td>GLPK (linear programming package)</td>
<td>536</td>
</tr>
<tr>
<td>GMRES (generalized minimum residual method)</td>
<td>89</td>
</tr>
<tr>
<td>GNU C++ compiler</td>
<td>5</td>
</tr>
<tr>
<td>GNU Scientific Library</td>
<td>3</td>
</tr>
<tr>
<td>Gnuplot</td>
<td>1162</td>
</tr>
<tr>
<td>Godunov’s method</td>
<td>1043</td>
</tr>
<tr>
<td>Golden mean (golden ratio)</td>
<td>11, 449, 494, 500</td>
</tr>
<tr>
<td>Golden section search</td>
<td>443, 489, 496</td>
</tr>
<tr>
<td>Goldman-Tucker theorem</td>
<td>539</td>
</tr>
<tr>
<td>Golub-Welsch algorithm, for Gaussian quadrature</td>
<td>188</td>
</tr>
<tr>
<td>Goodness-of-fit</td>
<td>773, 779, 782, 783, 787, 813</td>
</tr>
<tr>
<td>no good Bayesian methods</td>
<td>779, 1010</td>
</tr>
<tr>
<td>Gram-Schmidt</td>
<td></td>
</tr>
<tr>
<td>orthogonalization</td>
<td>105, 564, 565, 589, 598</td>
</tr>
<tr>
<td>SVD as alternative to</td>
<td>74</td>
</tr>
<tr>
<td>Graphics, function plotting</td>
<td>444, 1160-1163</td>
</tr>
<tr>
<td>Gravitational potential</td>
<td>631</td>
</tr>
<tr>
<td>Gray code</td>
<td>405, 1160, 1166-1168</td>
</tr>
<tr>
<td>Greenbaum, A.</td>
<td>90</td>
</tr>
<tr>
<td>Gregorian calendar</td>
<td>6</td>
</tr>
<tr>
<td>Grid square</td>
<td>132</td>
</tr>
<tr>
<td>Gridding</td>
<td>150-154</td>
</tr>
<tr>
<td>Group, dihedral</td>
<td>1174</td>
</tr>
<tr>
<td>Guard digits</td>
<td>1164</td>
</tr>
<tr>
<td>Half weighting</td>
<td>1071</td>
</tr>
<tr>
<td>Halley’s method</td>
<td>263, 264, 271, 335, 463</td>
</tr>
<tr>
<td>Halton’s quasi-random sequence</td>
<td>404</td>
</tr>
<tr>
<td>Hamming code</td>
<td>852</td>
</tr>
<tr>
<td>Hamming distance</td>
<td>873</td>
</tr>
<tr>
<td>error-correcting codes</td>
<td>851, 1168</td>
</tr>
<tr>
<td>Hamming window</td>
<td>658</td>
</tr>
<tr>
<td>Hamming’s motto</td>
<td>443</td>
</tr>
<tr>
<td>Hann window</td>
<td>657</td>
</tr>
<tr>
<td>Hard-decision decoding</td>
<td>853</td>
</tr>
<tr>
<td>error correction</td>
<td>855</td>
</tr>
<tr>
<td>Harmonic analysis</td>
<td></td>
</tr>
<tr>
<td>see Fourier transform</td>
<td></td>
</tr>
<tr>
<td>Harwell-Boeing format</td>
<td>83</td>
</tr>
<tr>
<td>Hash</td>
<td></td>
</tr>
<tr>
<td>collision strategy</td>
<td>387, 390</td>
</tr>
<tr>
<td>examples</td>
<td>396</td>
</tr>
<tr>
<td>function</td>
<td>352, 387-389</td>
</tr>
<tr>
<td>key</td>
<td>387</td>
</tr>
<tr>
<td>memory</td>
<td>392-397</td>
</tr>
<tr>
<td>multimap memory</td>
<td>394-397</td>
</tr>
<tr>
<td>table</td>
<td>386-392</td>
</tr>
<tr>
<td>of whole array</td>
<td>358-361</td>
</tr>
<tr>
<td>Heap (data structure)</td>
<td>426, 434, 952, 1178</td>
</tr>
<tr>
<td>Heapsort</td>
<td>420, 426-428, 434</td>
</tr>
<tr>
<td>Helmholtz equation</td>
<td>1057</td>
</tr>
<tr>
<td>Hermite interpolation</td>
<td>916</td>
</tr>
<tr>
<td>Hermite polynomials</td>
<td>183, 185</td>
</tr>
<tr>
<td>Hermitian matrix</td>
<td>564, 590</td>
</tr>
<tr>
<td>Hertz (unit of frequency)</td>
<td>600</td>
</tr>
<tr>
<td>Hessenberg matrix</td>
<td>105, 567, 585, 590-595, 598</td>
</tr>
<tr>
<td>QR algorithm</td>
<td>596</td>
</tr>
<tr>
<td>see also Matrix</td>
<td></td>
</tr>
<tr>
<td>Hessian matrix</td>
<td>483, 510, 517, 521, 522, 799-801, 1011, 1020, 1021</td>
</tr>
<tr>
<td>is inverse of covariance matrix</td>
<td>802</td>
</tr>
<tr>
<td>second derivatives in</td>
<td>800, 801</td>
</tr>
<tr>
<td>Hidden Markov model</td>
<td>856-868</td>
</tr>
<tr>
<td>backward estimate</td>
<td>861</td>
</tr>
<tr>
<td>Baum-Welch re-estimation</td>
<td>865-867</td>
</tr>
<tr>
<td>Bayesian nature of</td>
<td>868</td>
</tr>
<tr>
<td>Bayesian posterior probability</td>
<td>860, 861, 864</td>
</tr>
<tr>
<td>Bayesian re-estimation</td>
<td>864-866</td>
</tr>
<tr>
<td>compared to Viterbi algorithm</td>
<td>867, 868</td>
</tr>
<tr>
<td>convergence of Baum-Welch re-estimation</td>
<td>866</td>
</tr>
<tr>
<td>expectation-maximization algorithm</td>
<td>866</td>
</tr>
<tr>
<td>forward-backward algorithm</td>
<td>861, 862, 864-867</td>
</tr>
<tr>
<td>forward estimate</td>
<td>860</td>
</tr>
<tr>
<td>gene sequencing</td>
<td>866</td>
</tr>
<tr>
<td>hidden state</td>
<td>859</td>
</tr>
<tr>
<td>know intermediate states</td>
<td>864</td>
</tr>
<tr>
<td>missing data</td>
<td>864</td>
</tr>
<tr>
<td>observations</td>
<td>859</td>
</tr>
<tr>
<td>re-estimation of symbol probability matrix</td>
<td>865</td>
</tr>
<tr>
<td>re-estimation of transition probabilities</td>
<td>865</td>
</tr>
<tr>
<td>renormalization</td>
<td>862</td>
</tr>
<tr>
<td>speech recognition</td>
<td>866</td>
</tr>
<tr>
<td>symbols</td>
<td>859</td>
</tr>
<tr>
<td>trellis decoding</td>
<td>864</td>
</tr>
<tr>
<td>variations</td>
<td>864</td>
</tr>
<tr>
<td>Hierarchical clustering</td>
<td>868-882</td>
</tr>
<tr>
<td>Hierarchically band-diagonal matrix</td>
<td>716</td>
</tr>
<tr>
<td>High-order not same as high-accuracy</td>
<td>112, 156, 238, 489, 500, 908, 911, 943</td>
</tr>
<tr>
<td>Index</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>High-pass filter</td>
<td>667</td>
</tr>
<tr>
<td>Higher-order statistics</td>
<td>604</td>
</tr>
<tr>
<td>Hilbert matrix</td>
<td>94</td>
</tr>
<tr>
<td>Hilbert’s Third Problem</td>
<td>1127</td>
</tr>
<tr>
<td>Histogram, variable-size bins</td>
<td>438</td>
</tr>
<tr>
<td>Historic maximum entropy method</td>
<td>1022</td>
</tr>
<tr>
<td>Hobson’s choice</td>
<td>704</td>
</tr>
<tr>
<td>Homogeneous linear equations</td>
<td>69</td>
</tr>
<tr>
<td>Hook step methods</td>
<td>486</td>
</tr>
<tr>
<td>HOPDM (software)</td>
<td>548</td>
</tr>
<tr>
<td>Hotelling’s method for matrix inverse</td>
<td>64, 716</td>
</tr>
<tr>
<td>Householder transformation</td>
<td>67, 567, 578–584, 586, 587, 590, 594</td>
</tr>
<tr>
<td>in QR decomposition</td>
<td>103</td>
</tr>
<tr>
<td>operation count</td>
<td>582</td>
</tr>
<tr>
<td>Huffman coding</td>
<td>680, 713, 1160, 1175–1181</td>
</tr>
<tr>
<td>Hull, convex</td>
<td>1097, 1132, 1146</td>
</tr>
<tr>
<td>Hyperbolic functions, explicit formulas for inverse</td>
<td>227</td>
</tr>
<tr>
<td>Hyperbolic partial differential equations</td>
<td>1024</td>
</tr>
<tr>
<td>advective equation</td>
<td>1032</td>
</tr>
<tr>
<td>flux-conservative initial value problems</td>
<td>1031–1043</td>
</tr>
<tr>
<td>Hypergeometric function</td>
<td>252, 318–320</td>
</tr>
<tr>
<td>routine for</td>
<td>318, 319</td>
</tr>
<tr>
<td>Hypothesis, null</td>
<td>720</td>
</tr>
<tr>
<td>IBM</td>
<td>26, 32, 36</td>
</tr>
<tr>
<td>bad random number generator</td>
<td>344</td>
</tr>
<tr>
<td>checksum</td>
<td>1174</td>
</tr>
<tr>
<td>radix base for floating point arithmetic</td>
<td>592</td>
</tr>
<tr>
<td>ICF (intrinsic correlation function) model</td>
<td>1022</td>
</tr>
<tr>
<td>Identity (unit) matrix</td>
<td>39</td>
</tr>
<tr>
<td>Idioms</td>
<td>16</td>
</tr>
<tr>
<td>IEEE floating point format</td>
<td>9, 10, 34, 257</td>
</tr>
<tr>
<td>if structure</td>
<td>14</td>
</tr>
<tr>
<td>warning about nesting</td>
<td>14</td>
</tr>
<tr>
<td>IIR (infinite impulse response) filter</td>
<td>668–672, 681</td>
</tr>
<tr>
<td>Ill-conditioned integral equations</td>
<td>987</td>
</tr>
<tr>
<td>Image processing</td>
<td>631, 1010</td>
</tr>
<tr>
<td>as an inverse problem</td>
<td>1010</td>
</tr>
<tr>
<td>cosine transform</td>
<td>625</td>
</tr>
<tr>
<td>fast Fourier transform (FFT)</td>
<td>631, 637, 1010</td>
</tr>
<tr>
<td>from modulus of Fourier transform</td>
<td>1012</td>
</tr>
<tr>
<td>maximum entropy method (MEM)</td>
<td>1016–1022</td>
</tr>
<tr>
<td>QO tree</td>
<td>713, 715</td>
</tr>
<tr>
<td>Implicit</td>
<td>442</td>
</tr>
<tr>
<td>function theorem</td>
<td>44</td>
</tr>
<tr>
<td>pivoting</td>
<td>44</td>
</tr>
<tr>
<td>shifts in QL method</td>
<td>586–589</td>
</tr>
<tr>
<td>Implicit differencing</td>
<td>1033</td>
</tr>
<tr>
<td>for diffusion equation</td>
<td>1045</td>
</tr>
<tr>
<td>for stiff equations</td>
<td>932, 933, 944</td>
</tr>
<tr>
<td>Importance sampling, in Monte Carlo</td>
<td>411, 412, 414, 835, 836</td>
</tr>
<tr>
<td>Improper integrals</td>
<td>167–172</td>
</tr>
<tr>
<td>Impulse response function</td>
<td>641–643, 649, 668</td>
</tr>
<tr>
<td>IMSL</td>
<td>3, 40, 76, 466, 470, 568</td>
</tr>
<tr>
<td>IMT (Iri, Moriguti, Takasawa) rule</td>
<td>173</td>
</tr>
<tr>
<td>In-place selection</td>
<td>439</td>
</tr>
<tr>
<td>Include files</td>
<td>3, 4</td>
</tr>
<tr>
<td>Incomplete beta function</td>
<td>270–273</td>
</tr>
<tr>
<td>for F-test</td>
<td>730</td>
</tr>
<tr>
<td>for Student’s t</td>
<td>729</td>
</tr>
<tr>
<td>routine for</td>
<td>273</td>
</tr>
<tr>
<td>Incomplete gamma function</td>
<td>259–263</td>
</tr>
<tr>
<td>deviates from</td>
<td>369</td>
</tr>
<tr>
<td>for chi-square</td>
<td>732, 779</td>
</tr>
<tr>
<td>inverse</td>
<td>263</td>
</tr>
<tr>
<td>Increment of linear congruential generator</td>
<td>343</td>
</tr>
<tr>
<td>Incremental quantile estimation</td>
<td>435</td>
</tr>
<tr>
<td>changes with time</td>
<td>438</td>
</tr>
<tr>
<td>Indentation of blocks</td>
<td>14</td>
</tr>
<tr>
<td>Index table</td>
<td>419, 426, 428–431</td>
</tr>
<tr>
<td>Inequality constraints</td>
<td>526, 528, 538</td>
</tr>
<tr>
<td>Inference</td>
<td>840–898</td>
</tr>
<tr>
<td>Information</td>
<td>754–761</td>
</tr>
<tr>
<td>mutual</td>
<td>758–761</td>
</tr>
<tr>
<td>side</td>
<td>760, 761</td>
</tr>
<tr>
<td>theory</td>
<td>754–761</td>
</tr>
<tr>
<td>Inheritance</td>
<td>23, 24</td>
</tr>
<tr>
<td>examples of in NR</td>
<td>23</td>
</tr>
<tr>
<td>Initial value problems</td>
<td>900, 1024, 1026</td>
</tr>
<tr>
<td>see also Differential equations; Injection operator</td>
<td>1068</td>
</tr>
<tr>
<td>inline directive</td>
<td>29</td>
</tr>
<tr>
<td>Inscribed circle (incircle)</td>
<td>1112</td>
</tr>
<tr>
<td>Instability</td>
<td>see Stability</td>
</tr>
<tr>
<td>Instantiation</td>
<td>18, 19</td>
</tr>
<tr>
<td>Int. __int32, __int64</td>
<td>25</td>
</tr>
<tr>
<td>Integer programming</td>
<td>536</td>
</tr>
<tr>
<td>Integral equations</td>
<td>986–1023</td>
</tr>
<tr>
<td>adaptive stepsize control</td>
<td>995</td>
</tr>
<tr>
<td>block-by-block method</td>
<td>994</td>
</tr>
<tr>
<td>correspondence with linear algebraic equations</td>
<td>986</td>
</tr>
<tr>
<td>degenerate kernel</td>
<td>992</td>
</tr>
<tr>
<td>eigenvalue problems</td>
<td>987, 992</td>
</tr>
<tr>
<td>error estimate in solution</td>
<td>991</td>
</tr>
<tr>
<td>Fredholm</td>
<td>986, 989–992</td>
</tr>
<tr>
<td>Fredholm alternative</td>
<td>987</td>
</tr>
<tr>
<td>homogeneous, second kind</td>
<td>991</td>
</tr>
<tr>
<td>ill-conditioned</td>
<td>987</td>
</tr>
<tr>
<td>infinite range</td>
<td>995</td>
</tr>
<tr>
<td>inverse problems</td>
<td>987, 1001–1006</td>
</tr>
<tr>
<td>kernel</td>
<td>986</td>
</tr>
<tr>
<td>nonlinear</td>
<td>988, 994</td>
</tr>
<tr>
<td>Nystrom method</td>
<td>989–992, 995</td>
</tr>
<tr>
<td>product Nystrom method</td>
<td>995</td>
</tr>
<tr>
<td>solving with sinc expansions</td>
<td>178</td>
</tr>
<tr>
<td>subtraction of singularity</td>
<td>996</td>
</tr>
<tr>
<td>symmetric kernel</td>
<td>992</td>
</tr>
<tr>
<td>unstable quadrature</td>
<td>994</td>
</tr>
<tr>
<td>Volterra</td>
<td>988, 992–995</td>
</tr>
<tr>
<td>wavelets</td>
<td>989</td>
</tr>
<tr>
<td>with singularities</td>
<td>995–1000</td>
</tr>
</tbody>
</table>
Index

with singularities, worked example 999, 1000

see also Inverse problems

Integral operator, wavelet approximation of 715, 989

Integration of functions 155–200
Chebyshev approximation 240, 241
cosine integrals 300
Fourier integrals 692–699
Fourier integrals, infinite range 699
Fresnel integrals 297
Gauss-Hermite 185
Gauss-Jacobi 186
Gauss-Laguerre 184
Gauss-Legendre 183
infinite ranges 176–178
integrals that are elliptic integrals 309
path integration 251–254
sine integrals 300

see also Quadrature

Integro-differential equations 989

INTENT attribute (Fortran) 26

Interior-point method 85, 536–549

see also Linear Programming

Intermediate value theorem 445

Interpolation 110–154
Aitken’s algorithm 118
avoid in Fourier analysis 685
barycentric rational 113, 127, 128
bicubic 136–138
biharmonic 153
bilinear 133, 134
caution on high-order 112, 113
coefficients of polynomial 111, 129–131, 241, 243, 690
curve 139, 147
eroerror estimates for 111
for computing Fourier integrals 694
for differential equation output 916
functions with poles 124
grid, on a 132–135
Hermite 916
inverse multiquadric 142
inverse quadratic 454, 496
irregular grid 139–149, 1097, 1141, 1142
kriging 144–147
Laplace/Poisson 150–154
minimum curvature 153
multidimensional 113, 132–135, 139–154
multigrid method, in 1070–1072
multiquadric 141
Neville’s algorithm 118, 231, 924
normalized radial basis functions 140
Nystrom 990
open vs. closed curve 148
operator count for 111
operator 1068
order of 112
ordinary differential equations and 113
oscillations of polynomial 112, 129, 489, 500
parabolic, for minimum finding 496–499
polynomial 110, 118–120, 231, 924
pseudospectral method and 1087
radial basis functions 139–144
rational Chebyshev approximation 247–251
rational function 110, 113, 124–128, 245, 275, 922
reverse (extrapolation) 690, 691
scattered data 139–154
Shepard’s method 140
spline 111, 120–124, 135
trigonometric 110

see also Fitting

Intersection
line and sphere 1121
line and triangle 1121
line segments 1118
lines 1117
QO tree used to find 1150

Intersections 1097

Interval variable (statistics) 741

Intrinsic correlation function (ICF) model 1022

Inverse function of \(x \log(x) \) 307–309, 335

Inverse hyperbolic function 227, 310

Inverse iteration see Eigensystems

stable equilibrium of Markov model 859

Inverse multiquadric 142

Inverse problems 987, 1001–1006
and integral equations 987
Backus-Gilbert method 1014–1016
Bayesian approach 1005, 1022
central idea 1005
constrained linear inversion method 1006
data inversion 1014
deterministic constraints 1011–1013
Gerchberg-Saxton algorithm 1012
in geophysics 1016
incomplete Fourier coefficients 1018, 1020
linear regularization 1006–1013
maximum entropy method (MEM) 1016–1022
MEM demystified 1019, 1020
optimally localized average 1014–1016
Phillips-Twomey method 1006
principal solution 1004
regularization 1002–1006
regularizing operator 1004
stabilizing functional 1004
Tikhonov-Miller regularization 1007
trade-off curve 1002, 1016
two-dimensional regularization 1010, 1011
use of conjugate gradient minimization 1011, 1020
use of convex sets 1011–1013
use of Fourier transform 1010, 1012
Van Cittert’s method 1011

Inverse quadratic interpolation 454, 496

Inverse trigonometric function 310

_10 26, 32, 36
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQ (incremental quantile) agent</td>
<td>435</td>
</tr>
<tr>
<td>Irreducibility of Markov model</td>
<td>858</td>
</tr>
<tr>
<td>Irreducible polynomials modulo 2</td>
<td>382</td>
</tr>
<tr>
<td>Irregular grid, interpolation on</td>
<td>139–149, 1141, 1142</td>
</tr>
<tr>
<td>Is-a relationship</td>
<td>23</td>
</tr>
<tr>
<td>ISBN (International Standard Book Number) checksum</td>
<td>1173</td>
</tr>
<tr>
<td>Iterated integrals</td>
<td>196, 197</td>
</tr>
<tr>
<td>Iteration</td>
<td>14</td>
</tr>
<tr>
<td>for linear algebraic equations</td>
<td>40</td>
</tr>
<tr>
<td>functional</td>
<td>943</td>
</tr>
<tr>
<td>in root finding</td>
<td>443</td>
</tr>
<tr>
<td>required for two-point boundary value problems</td>
<td>955–957</td>
</tr>
<tr>
<td>to improve solution of linear algebraic equations</td>
<td>61–65, 245</td>
</tr>
<tr>
<td>Iteration matrix</td>
<td>1060</td>
</tr>
<tr>
<td>Jacobi matrix, for Gaussian quadrature</td>
<td>188</td>
</tr>
<tr>
<td>Jacobi transformation (or rotation)</td>
<td>105, 567</td>
</tr>
<tr>
<td>Jacobian determinant</td>
<td>364, 981</td>
</tr>
<tr>
<td>Jacobian elliptic functions</td>
<td>309, 316, 317</td>
</tr>
<tr>
<td>Jacobian matrix</td>
<td>475, 477, 480, 483, 540, 935, 936</td>
</tr>
<tr>
<td>singular in Newton’s rule</td>
<td>486</td>
</tr>
<tr>
<td>Java</td>
<td>1, 12</td>
</tr>
<tr>
<td>Jenkins-Traub method</td>
<td>470</td>
</tr>
<tr>
<td>Jordan curve theorem</td>
<td>1124</td>
</tr>
<tr>
<td>JPEG-2000 standard</td>
<td>712</td>
</tr>
<tr>
<td>Julian Day</td>
<td>3, 6</td>
</tr>
<tr>
<td>Jump transposition errors</td>
<td>1174</td>
</tr>
<tr>
<td>K-means clustering</td>
<td>848–850</td>
</tr>
<tr>
<td>K-S test see Kolmogorov-Smirnov test</td>
<td></td>
</tr>
<tr>
<td>Kalman filter</td>
<td>824</td>
</tr>
<tr>
<td>Kaps-Rentrop method</td>
<td>934</td>
</tr>
<tr>
<td>KD tree</td>
<td>1101–1110</td>
</tr>
<tr>
<td>construction of</td>
<td>1102–1106</td>
</tr>
<tr>
<td>number of boxes in</td>
<td>1102</td>
</tr>
<tr>
<td>Kelly’s formula</td>
<td>758</td>
</tr>
<tr>
<td>Kendall’s tau</td>
<td>749, 751–754</td>
</tr>
<tr>
<td>Kernel</td>
<td>986</td>
</tr>
<tr>
<td>averaging, in Backus-Gilbert method</td>
<td>1014</td>
</tr>
<tr>
<td>degenerate</td>
<td>992</td>
</tr>
<tr>
<td>finite rank</td>
<td>992</td>
</tr>
<tr>
<td>inverse response</td>
<td>1014</td>
</tr>
<tr>
<td>separable</td>
<td>992</td>
</tr>
<tr>
<td>singular</td>
<td>995</td>
</tr>
<tr>
<td>symmetric</td>
<td>992</td>
</tr>
<tr>
<td>Kernel methods of classification</td>
<td>840, 889, 892</td>
</tr>
<tr>
<td>Keys used in sorting</td>
<td>428</td>
</tr>
<tr>
<td>KKT (Karush-Kuhn-Tucker) conditions</td>
<td>539, 542, 886, 889</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov probability distribution</td>
<td>334–336</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov test</td>
<td>731, 736–738, 819</td>
</tr>
<tr>
<td>two-dimensional</td>
<td>762–766</td>
</tr>
<tr>
<td>variants</td>
<td>738, 762</td>
</tr>
<tr>
<td>Kriging</td>
<td>139</td>
</tr>
<tr>
<td>fitting by</td>
<td>836–838</td>
</tr>
<tr>
<td>fitting not same as interpolation</td>
<td>838</td>
</tr>
<tr>
<td>interpolation by</td>
<td>144–147</td>
</tr>
<tr>
<td>is Gaussian process regression</td>
<td>837</td>
</tr>
<tr>
<td>linear prediction and</td>
<td>674, 679</td>
</tr>
<tr>
<td>nugget effect</td>
<td>838</td>
</tr>
<tr>
<td>Kuiper’s statistic</td>
<td>739</td>
</tr>
<tr>
<td>Kullback-Leibler distance</td>
<td>756–758</td>
</tr>
<tr>
<td>symmetrized</td>
<td>757</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>723, 725</td>
</tr>
<tr>
<td>L-estimate</td>
<td>818</td>
</tr>
<tr>
<td>Lag</td>
<td>602, 648, 669</td>
</tr>
<tr>
<td>Lagged Fibonacci generator</td>
<td>354</td>
</tr>
<tr>
<td>Lagrange multiplier</td>
<td>758, 760, 1001</td>
</tr>
<tr>
<td>Lagrange’s formula for polynomial interpolation</td>
<td>94, 118, 690, 691, 694, 1089, 1092</td>
</tr>
<tr>
<td>Laguerre polynomials</td>
<td>183</td>
</tr>
<tr>
<td>Laguerre’s method</td>
<td>444, 466–469</td>
</tr>
<tr>
<td>convergence</td>
<td>466</td>
</tr>
<tr>
<td>Lanczos lemma</td>
<td>609, 610</td>
</tr>
<tr>
<td>Lanczos method for gamma function</td>
<td>256</td>
</tr>
<tr>
<td>Landen transformation</td>
<td>310</td>
</tr>
<tr>
<td>LAPACK</td>
<td>40, 567</td>
</tr>
<tr>
<td>Laplace’s equation</td>
<td>292, 1024</td>
</tr>
<tr>
<td>see also Poisson equation</td>
<td></td>
</tr>
<tr>
<td>Laplace/Poisson interpolation</td>
<td>150–154</td>
</tr>
<tr>
<td>Las Vegas</td>
<td>744</td>
</tr>
<tr>
<td>Latin square or hypercube</td>
<td>409, 410</td>
</tr>
<tr>
<td>Latitude/longitude in n-dimensions</td>
<td>1128</td>
</tr>
<tr>
<td>Laurent series</td>
<td>681, 682</td>
</tr>
<tr>
<td>Lax method</td>
<td>1034–1036, 1042, 1050, 1051</td>
</tr>
<tr>
<td>multidimensional</td>
<td>1050, 1051</td>
</tr>
<tr>
<td>Lax-Wendroff method</td>
<td>1040</td>
</tr>
<tr>
<td>LCG see Linear congruential random number generator</td>
<td></td>
</tr>
<tr>
<td>ldexp</td>
<td>207, 279, 283</td>
</tr>
<tr>
<td>LDL</td>
<td>544, 548</td>
</tr>
<tr>
<td>Ldoub</td>
<td>25</td>
</tr>
<tr>
<td>Leakage in power spectrum estimation</td>
<td>655, 656, 658, 662–665</td>
</tr>
<tr>
<td>Leakage width</td>
<td>658, 659</td>
</tr>
<tr>
<td>Leapfrog method</td>
<td>1038, 1039</td>
</tr>
<tr>
<td>Least-squares filters see Savitzky-Golay filters</td>
<td></td>
</tr>
<tr>
<td>Least-squares fitting</td>
<td>776–798</td>
</tr>
<tr>
<td>degeneracies in</td>
<td>794, 795, 797</td>
</tr>
<tr>
<td>Fourier components</td>
<td>686</td>
</tr>
<tr>
<td>freezing parameters</td>
<td>791, 824</td>
</tr>
<tr>
<td>general linear case</td>
<td>788–798</td>
</tr>
<tr>
<td>how much Δx^2 is significant</td>
<td>816</td>
</tr>
<tr>
<td>Levenberg-Marquardt method</td>
<td>801–806, 1022</td>
</tr>
<tr>
<td>Lomb periodogram</td>
<td>686</td>
</tr>
<tr>
<td>maximum likelihood estimator</td>
<td>777</td>
</tr>
<tr>
<td>method for smoothing data</td>
<td>768</td>
</tr>
<tr>
<td>multidimensional</td>
<td>798</td>
</tr>
<tr>
<td>nonlinear</td>
<td>486, 799–806, 1022</td>
</tr>
<tr>
<td>nonlinear, advanced methods</td>
<td>806</td>
</tr>
</tbody>
</table>
normal equations 768, 789–793, 1007
optimal (Wiener) filtering 650
\(QR\) method in 105, 791
rational Chebyshev approximation 249
spectral analysis 686
standard (probable) errors on fitted parameters
weighted 777
see also Fitting
Left eigenvalues or eigenvectors 564, 565
Legendre elliptic integral see Elliptic integrals
Legendre polynomials 183, 293
basis functions for spectral methods 1086
fitting data to 797
recurrence relation 219
see also Associated Legendre polynomials; Spherical harmonics
Lehmer-Schur algorithm 470
Levin’s method for continued fraction 207, 260
Levrotsev’s distribution 723
Levenberg-Marquardt algorithm 486, 801–806, 1022
advanced implementation 806
Levin transformation 214
Levinson’s method 96
Liapunov stability 933
Likelihood ratio 735, 757
Limbo 457
Limit cycle
Laguerre’s method 466
Markov model 858
Line 1097, 1117–1121
closest approach of two 1121
closest approach to point 1121
distance of point to 1118
equation satisfied by 1117
in 3 dimensions 1121
intersection of two 1117
intersection with sphere 1121
intersection with triangle 1121
left-of relations 1118
segments 1118–1120
skew 1121
__LIRE__ (ANSI C macro) 30
Line minimization see Minimization, along a ray
Line search see Minimization, along a ray
Linear algebraic equations 37–109
and integral equations 986, 990
band-diagonal 58–61
biconjugate gradient method 88
Cholesky decomposition 100–102, 378, 379, 525, 543, 568, 791
complex 55
computing \(A^{-1} \cdot B\) 53
conjugate gradient method 87–92, 716
cyclic tridiagonal 79, 80
direct methods 40, 76
Gauss-Jordan elimination 41–46
Gaussian elimination 46, 48
Hilbert matrix 94
Hotelling’s method 64, 716
iterative improvement 61–65, 245, 548
iterative methods 40, 87–92
large sets of 38, 39
least-squares solution 65, 70, 73, 249, 793
\(LU\) decomposition 48–55, 245, 483, 484, 486, 534, 936, 990, 1008
nonsingular 38, 39
overdetermined 39, 249, 793, 1004
parallel solution 57
partitioned 81
\(QR\) decomposition 102–106, 483, 484, 486, 791
row vs. column elimination 45, 46
Schultz’s method 64, 716
Sherman-Morrison formula 76–79, 94, 534
singular 38, 69, 73, 249, 793
singular value decomposition (SVD) 65–75, 249, 793, 1003
sparse 39, 58, 75–92, 534, 544, 548, 937, 1011
summary of tasks 39, 40
Toeplitz 93, 96–99, 245
Vandemonde 93–96, 130
wavelet solution 715, 716, 989
Woodbury formula 80, 81, 94
see also Eigensystems
Linear codes 851
Linear congruential random number generator 341, 343, 348
Linear constraints 526, 530
Linear convergence 448, 495
Linear correlation (statistics) 745–748
Linear dependency
constructing orthonormal basis 74, 105
in linear algebraic equations 38
of directions in \(N\)-dimensional space 511
Linear equations see Differential equations;
Integral equations: Linear algebraic equations
Linear feedback shift register (LFSR) 346, 380–386
state vector 380
update rule 380
Linear inversion method, constrained 1006
Linear optimization 526
Linear prediction 673–681
characteristic polynomial 676
coefficients 673–681
compared with regularization 1008
contrasted to polynomial extrapolation 675, 677
is Gaussian process regression 837

kriging and 144
multidimensional 836–838
related to optimal filtering 673, 674
removal of bias in 145, 678, 679
stability 676
Linear predictive coding (LPC) 679–681
Linear programming 488, 526–549
affine scaling 543
artificial variables 530, 531
augmented equations 543, 548
auxiliary objective function 530
barrier method 541
basic variables 529, 531
boundary 528
bounded variables 535, 546
centering parameter 541
central path 540
complementarity condition 539
complementary slackness theorem 539
constraints 526, 530
cycling 534
degenerate basis 533
Devex 535
dual algorithm 535
dual feasible basis vector 538
dual interior-point method 542
dual problem 538, 539
duality gap 538
duality measure 541
efficiency 537, 541
ellipsoid method 537
equality constraints 526, 528
feasible basis vector 528, 529, 532
feasible vector 526, 538
free variables 538
fundamental theorem 528
Goldman-Tucker theorem 539
inequality constraints 526, 528, 538
infeasible method 537
interior-point method 85, 488, 536–549
KKT conditions 539, 542
logical variables 530, 538
long-step method 541
minimum ratio test 532
multiple pricing 535
nonbasic variables 529, 531
normal equations 85, 543, 548
objective function 526, 528, 530
optimal feasible vector 526, 528, 532
path-following method 541
phases one and two 530
predictor-corrector method 547
primal algorithm 535
primal-dual interior-point method 542
primal-dual solution 539
primal interior-point method 542
primal problem 538
reduced cost 531
scaling of variables 535, 546
short-step method 541
simplex method 488, 502, 526–536, 548
simplex vs. interior-point 548
slack variables 529, 531, 535, 538, 547
sparse linear algebra 534, 544, 548
stalling 534
standard form 529, 530, 538
steepest edge pricing 535
strict complementarity 539
strong duality theorem 539
structural variables 530
surplus variables 529
unbounded objective function 532, 538
vertex of simplex 528, 531
weak duality theorem 538
worked example 530–533
zero variables 530
Linear regression 780–787
see also Fitting
Linear regularization 1006–1013
Linearly separable data 884
LINPACK 40, 567
Little-endian 9, 34
Long 25
Local extrapolation 911, 914
Local extremum 487, 551
Localization of roots see Bracketing
Log-sum-exp formula 844
Logarithmic function 310
barrier function 541
inverse of $\log(x)$ 307–309, 335
Logistic probability distribution 324–326
deviates from 363
Lognormal probability distribution 328, 329, 827
Lomb periodogram method of spectral analysis 685–687
fast algorithm 689–692
long long int 25
Loops 14
Lorentzian distribution 322
Lorentzian probability distribution 820
Low-pass filter 667, 766
LP coefficients see Linear prediction
LPC (linear predictive coding) 679–681
lp_solve 535, 536
band-diagonal matrix 59
Bartels-Golub update 535
complex equations 55
Crout’s algorithm 49, 59
fill-in, minimizing 535
for $A^{-1} \cdot B$ 53
for integral equations 990
for inverse iteration of eigenvectors 598
for inverse problems 1008
for matrix inverse 54
for nonlinear sets of equations 475, 486
for Padé approximant 245
for Toeplitz matrix 98
operation count 49, 54
Index

pivoting 50, 535
repeated backsubstitution 54, 60
solution of linear algebraic equations 54
solution of normal equations 790
stable equilibrium of Markov model 859
threshold partial pivoting 535
Lucifer (encryption algorithm) 358
Lucy’s Y^2 and Z^2 statistic 735
LUSOL 535

M-estimates 818
how to compute 821, 822
local 819–821
see also Maximum likelihood estimate
Machine accuracy 10, 1163
Machine learning 840
supervised 840
support vector machine 883–898
unsupervised 842, 868
Macintosh, see Apple Macintosh
Maehly’s procedure 465, 472
Magic
in MEM image restoration 1019, 1020
in Padé approximation 246, 247
Manitissa in floating point format 8–10, 1164
Manitissa in floating-point format 1189
Maple (software) 3
Marginals 743, 759, 825
Markov chain 825
Markov chain Monte Carlo 551, 774, 824–836
acceptance probability 827, 832
best stepsize 832
burn-in 826, 833–835
candidate point 827
compared to Monte Carlo integration 825
convergence diagnostics 835
converges to sample, not population, values 834
correlated directions 831
correlation time 834
detailed balance equation 825, 827
ergodic average 834
ergodic behavior 825
fitting model parameters 825
full conditional distributions 827
Gibbs sampler 827, 828
and inverse problems 1006
lognormal steps 827
Metropolis-Hastings algorithm 826, 827
normalizing constant 825, 828, 835, 836
parallel computing 835
parameter uncertainties 833
proposal distribution 826–828, 835
proposal generator 830
rapid mixing 826, 831
Markov model 856–868
aperiodic 858
as ensemble 857
convergence 858
corrected phylogenetic distance for 873
diagnosing 858, 859
directed graph 856
equilibrium distribution 857
ergodic 858
evolution in time 857
hidden 856–868
inverse iteration 859
irreducible 858
limit cycle 858
LU decomposition 859
multiple equilibria 859
population vector 857
transition matrix 856
transition probability 856
unstable equilibria 858, 859
Markowitz criterion 535
Marquardt method (least-squares fitting) 801–806, 1022
Mass, center of 399, 400
MasterCard checksum 1174
MatDoub, MatInt, etc. 26
Mathematica (software) 1, 3
Mathematical Center (Amsterdam) 454
Matlab 1, 3
Matrix 37, 38
approximation of 74, 75, 715
band-diagonal 56, 58–61, 76
band triangular 76
banded 40, 568
bidiagonal 67
block diagonal 76, 964, 966
block triangular 76
block tridiagonal 76
bordered 76
characteristic polynomial 563, 583
Cholesky decomposition 100–102, 378, 379, 525, 543, 568, 791
class for 24–29
column augmented 42, 43
column augmented complex 55
condition number 69, 89
curvature 800
cyclic banded 76
cyclic tridiagonal 79, 80
defective 564, 591, 598, 599
of derivatives see Hessian matrix; Jacobian determinant
design (fitting) 768, 788
determinant of 39, 54, 55
diagonalization 566
distance 869
elementary row and column operations 42, 43
finite differencing of partial differential equations 1027
Hermitean 564, 568, 590
Hermitean conjugate 564
Hessenberg 105, 567, 585, 590–596, 598
Hessian see Hessian matrix
hierarchically band-diagonal 716
Index

Algorithms for image restoration 1020
Bayesian 1022
Cornwell-Evans algorithm 1021
demystified 1019, 1020
for inverse problems 1016–1022
historic vs. Bayesian 1022
image restoration 1016–1022
intrinsic correlation function (ICF) model 1022
operation count 683
see also Linear prediction

Maximum likelihood
compared with probability 854
trellis decoding 854
Maximum likelihood estimate (M-estimates) 812, 818
chi-square test 812
defined 777
how to compute 821, 822
mean absolute deviation 820, 822
relation to least squares 777
Maxwell’s equations 1032
MCMC see Markov chain Monte Carlo
Mean absolute deviation of distribution 723, 820
related to median 822
Mean value theorem 151
Mean(s)
of distribution 722, 723, 725
statistical differences between two 726–730
Measurement errors 773
Median 419
by selection 822
calculating 432
changes with time 438
incremental estimation 435
as L-estimate 818
of distribution 722, 725, 726
role in robust straight line fitting 822
Median-of-three, in Quicksort 423
MEM see Maximum entropy method (MEM)
Memory, using scope to manage 20
Merit function 773
for inverse problems 1004
for straight line fitting 781, 822

Hilbert 94
identity 39
ill-conditioned 69, 71, 130, 131
indexed storage of 82–87
integral equations and 986, 990
inverse 39, 41, 47, 54, 76, 78, 81, 82, 106–108, 565
inverse by Hotelling’s method 64, 716
inverse by Schultz’s method 64, 716
inverse multiplied by a matrix 53
inverse, approximate 63
iteration for inverse 63–65, 716
Jacobi rotation 573
Jacobi transformation 567, 570–576, 578
Jacobian 935, 936
logical multiplication 949
lower triangular 48, 100, 988
Moore-Penrose inverse 70
multiplication denoted by dot 37
multiplication, optimizing order of 558, 559
norm 64
normal 564, 565
nullity 67, 68
nullspace 39, 67–70, 72, 563, 1002
orthogonal 103, 564, 579, 703, 1130
orthogonal transformation 566, 578, 584
orthonormal basis 74, 105
outer product denoted by ⊗ 78, 523
partitioning for determinant 82
partitioning for inverse 81, 82
positive-definite 40, 100, 543, 791
pseudo-inverse 70, 73
QR decomposition 102–106, 483, 484, 486, 791
range 67, 68
rank 67
rank-nullity theorem 68
residual 63
responsibility 842
rotation 1097, 1130, 1131
row and column indices 38
row vs. column operations 45, 46
self-adjoint 564, 565
similarity transform 566, 567, 570, 592, 594
singular 69, 71, 73, 563
singular value decomposition 39, 65–75, 1003
sparse 39, 75–92, 534, 544, 548, 715, 937, 964, 966, 1011
special forms 40
splitting in relaxation method 1060
spread 1015
storage schemes in C++ 38
suffix _I, _O, _IO 26, 32, 36
symmetric 40, 100, 563, 565, 568, 571, 576–583, 992
Toeplitz 93, 96–99, 245
transpose of sparse 85
triangular 567
tridiagonal 40, 56–61, 75, 76, 78, 122, 188, 576–589, 598, 1045, 1057, 1058, 1066
tridiagonal with fringes 1028
unitary 564
updating 105, 106, 484
upper Hessenberg 594
upper triangular 48, 103
Vandermonde 93–96, 130
see also Eigensystems; Illmatrix
Matrix equations see Linear algebraic equations
Matterhorn 723
MAX utility function 17
Maximization see Minimization
Maximum entropy method (MEM) 681–684, 1006
algorithms for image restoration 1020
Bayesian 1022
Cornwell-Evans algorithm 1021
demystified 1019, 1020
for inverse problems 1016–1022
historic vs. Bayesian 1022
image restoration 1016–1022
intrinsic correlation function (ICF) model 1022
operation count 683
see also Linear prediction

Maximum likelihood
compared with probability 854
trellis decoding 854
Maximum likelihood estimate (M-estimates) 812, 818
chi-square test 812
defined 777
how to compute 821, 822
mean absolute deviation 820, 822
relation to least squares 777
Maxwell’s equations 1032
MCMC see Markov chain Monte Carlo
Mean absolute deviation of distribution 723, 820
related to median 822
Mean value theorem 151
Mean(s)
of distribution 722, 723, 725
statistical differences between two 726–730
Measurement errors 773
Median 419
by selection 822
calculating 432
changes with time 438
incremental estimation 435
as L-estimate 818
of distribution 722, 725, 726
role in robust straight line fitting 822
Median-of-three, in Quicksort 423
MEM see Maximum entropy method (MEM)
Memory, using scope to manage 20
Merit function 773
for inverse problems 1004
for straight line fitting 781, 822
for straight line fitting, errors in both coordinates 785
in general linear least squares 788
nonlinear models 799
Mesh-drift instability 1040
Mesh generation 1150
Mesokurtic distribution 723
Message 754
Method of lines 1095
Method of regularization 1006
Metropolis algorithm 550, 552, 825
Metropolis-Hastings algorithm 551, 826, 827
Gibbs sampler as special case 827
Microsoft
integer types 26
NaN handling poor 35
Visual C++ 5
Windows 5
Midpoint method see Modified midpoint method;
Semi-implicit midpoint rule
Mikado, or the Town of Titipu 920
Miller’s algorithm 221, 278
Min-sum algorithm
dynamic programming 556
Viterbi decoding 867
MIN utility function 17
Minimal solution of recurrence relation 220, 221
Minimal trellis 853
Minimax
polynomial 235, 248
rational function 248, 249
Minimization 487–562
along a ray 88, 478, 489, 507–509, 511, 512,
519–521, 524, 540
annealing, method of simulated 487, 488,
549–555
bracketing of minimum 490–496, 503
Brent’s method 489, 496–500, 785
Broyden-Fletcher-Goldfarb-Shanno algorithm 490, 521–525
by searching smaller subspaces 1021
chi-square 778–780, 799
choice of methods 488–490
combinatorial 549
conjugate gradient method 489, 515–520,
1011, 1020
convergence rate 495, 511
Davidon-Fletcher-Powell algorithm 490, 521,
522
degenerate 1002
direction set methods 489, 509–514
downhill simplex method 489, 502–507, 552,
821
finding best-fit parameters 773
Fletcher-Reeves algorithm 489, 515–519
functional 1001, 1002
global 487, 552–554, 774
globally convergent multidimensional 521–525
golden section search 492–496
in nonlinear model fitting 799
KKT conditions 539, 542
line methods 507–509
linear 526
multidimensional 502–525
of path length 555–562
Polak-Ribiere algorithm 489, 517
Powell’s method 489, 502, 509–514
quasi-Newton methods 477, 489, 521–525
root finding and 476, 477
scaling of variables 523
steepest descent method 516, 1011
termination criterion 493, 503
use for sparse linear systems 87, 89
use in finding double roots 443
using derivatives 489, 499–502
variable metric methods 489, 521–525
see also Linear programming
Minimum curvature method 153
Minimum residual method, for sparse system 89
Minimum spanning tree 1147
MINPACK 806
Missing data 150–154, 685
in hidden Markov model 864
Mississippi River 552, 555
Mixture model, Gaussian 842–848
Mixture weight 843
Mode of distribution 722, 725, 726
Model-trust region 486, 806
Modeling of data see Fitting
Modes, homogeneous, of recursive filters 670
Modified Bessel functions see Bessel functions
Modified Lentz’s method, for continued fractions 208
Modified midpoint method 922, 923
Modified moments 190
Modulation, trellis coded 855
Modulus of linear congruential generator 343
Moments
and quadrature formulas 996
filter that preserves 768
modified problem of 190
of distribution 721–726
problem of 94
semi-invariants 725
Monic polynomial 181
Monotonicity constraint, in upwind differencing 1042
Monte Carlo 197, 341, 397–418
adaptive 410–418
and Kolmogorov-Smirnov statistic 740, 762,
764
bootstrap method 809, 810
comparison of sampling methods 412–414
importance sampling 411, 412, 414, 835, 836
integration 156, 197, 397–403, 410–418
integration compared to MCMC 825
integration, recursive 416
integration, using Sobol’ sequence 408, 409
integration, VEGAS algorithm 414–416
Markov chain 774, 824–836
partial differential equations 1030
quasi-random sequences in 403–410
quick and dirty 809, 810
recursive 410–418
significance of Lomb periodogram 686, 687
simulation of data 779, 807–810, 812
stratified sampling 412–414, 416
MOORE-PENROSE INVERSE 70
Mother functions 700
Mother Nature 807, 809
Moving average (MA) model 681
Moving window averaging 767
MRRR algorithm (Multiple Relatively Robust
Representations) 589, 599
Muller’s method 466, 473
Multidimensional
confidence levels of fitting 810, 812, 814, 816
data, use of binning 741
fitting 798, 836–838
Fourier transform 627–630
Fourier transform, real data 631–637
initial value problems 1049–1053
integrals 156, 196–199, 398, 410
interpolation 132–135, 139–154
Kolmogorov-Smirnov test 762–766
minimization 502–525
Monte Carlo integration 397–403, 410
normal (Gaussian) distribution 813
partial differential equations 1049–1053,
1083, 1095
root finding 442–486, 956, 959, 960, 963, 964
search using quasi-random sequence 404
secant method 474, 483
wavelet transform 712, 713
Multigrid method 1030, 1066–1083
avoid SOR 1070
boundary conditions 1072
choice of operators 1071
coarse-grid correction 1068
coarse-to-fine operator 1068
cycle 1069
dual viewpoint 1077
fine-to-coarse operator 1068
full approximation storage (FAS) algorithm
1076–1083
full multigrid method (FMG) 1067,
1072–1076
full weighting 1071
Gauss-Seidel relaxation 1069
half weighting 1071
importance of adjoint operator 1071
injection operator 1068
interpolation operator 1068
line relaxation 1070
local truncation error 1077, 1078
Newton’s rule 1077, 1079
nonlinear equations 1077
nonlinear Gauss-Seidel relaxation 1078
odd-even ordering 1070, 1073
operation count 1067
prolongation operator 1068
recursive nature 1069
relative truncation error 1077
relaxation as smoothing operator 1069
restriction operator 1068
speeding up FMG algorithm 1076
stopping criterion 1078
straight injection 1071
symbol of operator 1070, 1071
use of Richardson extrapolation 1072
V-cycle 1069
W-cycle 1069
zebra relaxation 1070
Multiplicative linear congruential generator
(MLCG) 341, 344, 348, 349
Multiplier of linear congruential generator 343
Multiply-with-carry (MWC) 347
Multipole methods, fast 140, 1150
Multiquadric 141
Multistep and multivalue methods (ODEs) 900,
942–946
see also Differential Equations;
Predictor-corrector methods
Multitaper methods 662–665
Multivariate normal
deviates 378, 379
distribution 813, 847, 848
Murphy’s Law 509
Mutual information 758–761
NAG 3, 40, 76, 568
Namespace, why no NR 36
NaN (not-a-number) 34, 35
how to set and test 34
isnan 35
quiet vs. signalling 35
Nat 755, 756, 760, 761
Natural cubic spline 122
Navier-Stokes equation 1035
Nearest neighbor 1097, 1101–1110, 1146
all points within specified radius 1109
Delaunay edges connect 1146
Neural networks 840, 883
Neutrino 762
Newton-Cotes formulas 158, 179
open 158, 159
Newton-Raphson method see Newton’s rule
Newton’s rule 182, 229, 443, 444, 456–462, 464, 466, 470, 584
cautions on use of numerical derivatives 459
extended by Halley 463
first published by Raphson 456
for interior-point method 539
for matrix inverse 64, 716
for reciprocal of number 1190
for square root of number 1191
fractal domain of convergence 462
globally convergent multidimensional 474, 477–486, 959, 960, 963
in multidimensions 472–476, 959, 960, 963, 964
in nonlinear multigrid 1077, 1079
in nonlinear Volterra equations 994
safe 460
scaling of variables 484
singular Jacobian 486
solving stiff ODEs 943, 944
with backtracking 478–483
Next reaction method 952
Niederreiter sequence 404
NIST-STS, for random number tests 345
NL2SOL 806
Noise
bursty 1168
effect on maximum entropy method 683
equivalent bandwidth 658
fitting data that contains 770, 773
model, for optimal filtering 651
Nominal variable (statistics) 720
Null hypothesis 720
Nullity 67, 68
Nullspace 39, 67–70, 72, 563, 1002
Number-theoretic transforms 616
numeric_limits 10, 34
Numerical derivatives 178, 229–232, 769
Numerical integration see Quadrature
Numerical Recipes
bugs in 5
compilers tested 5
cookbook, not menu 3
dependencies 4
electronic versions 5
how to use routines in 3
is not a program library 2, 18
is not a programming text 2
machines tested 5
obtaining source code 3
types 25
webnotes 4
Nyquist frequency 605, 607, 632, 653, 655, 685–687, 693
Nyström method 989–992, 995
product version 995

multivariate 378, 379, 813, 842, 843, 847, 848, 1006, 1129, 1130
semi-invariants of 725
sum of 12 uniform 377
tails compared to Poisson 778
two-dimensional (binormal) 746
variance of skewness of 723
see also Gaussian (normal) distribution
Normal equations (fitting) 40, 768, 789–793, 1002, 1007
often are singular 793
Normal equations (interior-point method) 85, 543
Normalization
normalizing constant 825, 828, 835, 836
of Bessel functions 221
of floating-point representation 9
of functions 181, 973
of modified Bessel functions 282
Normalized Radial Basis Functions 140
Not a Number see NaN
Notch filter 667, 671
NP-complete problem 551
NR:: why missing in 3rd ed. 36
nx3.h file 3, 4, 17, 28–30, 34–36
NMatrix 26, 28, 29
bounds checking 35
instrumenting 36
methods in 27
NVector 26, 28, 29
bounds checking 35
instrumenting 36
methods in 27
Nugget effect 838
different from measurement error 838
Null hypothesis 720
Nullity 67, 68
Nullspace 39, 67–70, 72, 563, 1002
Number-theoretic transforms 616
numeric_limits 10, 34
Numerical derivatives 178, 229–232, 769
Numerical integration see Quadrature
Numerical Recipes
bugs in 5
compilers tested 5
cookbook, not menu 3
dependencies 4
electronic versions 5
how to use routines in 3
is not a program library 2, 18
is not a programming text 2
machines tested 5
obtaining source code 3
types 25
webnotes 4
Nyquist frequency 605, 607, 632, 653, 655, 685–687, 693
Nyström method 989–992, 995
product version 995

_0 26, 32, 36
Object 17–24
 avoid copying large 36
 constructor 18, 27
 definition 18
 destruction 20, 21
 functor 21–23
 grouping related functions 18
 hides internal structure 17
 inheritance 23, 24
 instantiation 18, 19
 multiple instances of 20
 returning multiple values via 19
 saving internal state 20
 simple uses of 18–20
 standardizing an interface 19
 \texttt{struct} vs. \texttt{class} 17

see also \texttt{Class}

Object-oriented programming (OOP) 17–21, 23

Objective function 526, 528, 530

Oblateness parameter 971

Octave (software) 3

Octree see \texttt{QO tree}

Odd-even ordering
 in Gauss-Seidel relaxation 1070, 1073
 in successive over-relaxation (SOR) 1064

Odd parity 1168

Odds ratio 757

ODE see Differential equations

One-sided power spectral density 602

OOP see Object-oriented programming

Operation count
 balancing 592
 Baum-Welch re-estimation of hidden Markov model 865
 Bessel function evaluation 278
 bisection method 448

 Cholesky decomposition 100
 coefficients of interpolating polynomial 130
 complex multiplication 108
 cubic spline interpolation 122
 evaluating polynomial 203
 fast Fourier transform (FFT) 609, 610
 Gauss-Jordan elimination 47, 54
 Gaussian elimination 47
 Givens reduction 578
 Householder reduction 582
 interpolation 111
 inverse iteration 598, 599
 iterative improvement 63
 Jacobi transformation 573, 574
 Kendall’s tau 752
 \texttt{LU} decomposition 49, 54
 Markov model diagnosis 858
 matrix inversion 108
 matrix multiplication 107
 maximum entropy method 683
 multidimensional minimization 515
 multigrid method 1067
 multiplication 1188, 1190
 polynomial evaluation 108, 203

\texttt{QL} method 585, 588

\texttt{QR} decomposition 103, 105

\texttt{QR} method for Hessenberg matrices 596
 reduction to Hessenberg form 594
 selection by partitioning 433
 sorting 420, 422, 423
 Toeplitz matrix 93
 Vandermonde matrix 93

Operator
 precedence, in \texttt{C++} 12
 splitting 1028, 1052, 1053, 1065
 Optimal (Wiener) filtering 645, 649–652, 673, 674, 767
 compared with regularization 1008
 Optimal feasible vector 526, 528
 Optimally Localized Average (OLA) 1014–1016
 Optimization see Minimization
 Options, financial 329

Ordinary variable (statistics) 741

Ordinary differential equations see Differential equations

Orthogonal see Orthonormal functions;
 Orthonormal polynomials

Orthogonal transformation 566, 578, 584, 699

Orthogonal basis, constructing 74, 105

Orthonormal functions 181, 292

Orthonormal polynomials
 and Gaussian quadrature 181, 1087
 Chebyshev 183, 187, 233
 construct for arbitrary weight 189–191
 Gaussian weights from recurrence 188, 189
 Hermite 183
 in Gauss-Hermite integration 185
 Jacobi 183
 Laguerre 183
 Legendre 183

 weight function log \(x \) 190, 191

Orthonormality 66, 68, 70, 181, 579

Out-of-band signaling 1178

Outer product of matrices (denoted by \(\otimes \)) 78, 523

Outgoing wave boundary conditions 1026

Outlier 723, 778, 779, 781, 818, 821
 see also Robust estimation

Overcorrection 1061, 1062

Overflow 1164
 in complex arithmetic 225, 226

Overlap-add and overlap-save methods 646, 647

Overrelaxation parameter 1062
 choice of 1062–1064

p-value test 720

Packet-switched networks 1168

Padé approximant 125, 212, 245–247

Parabolic interpolation 496, 497

Parabolic partial differential equations 1024, 1043

Parallel axis theorem 413

Parallel programming
 cyclic reduction 224
FFT 614
polynomial evaluation 205
recurrence relations 223, 224
recursive doubling 223
tridiagonal systems 57
Parameters in fitting function 776–780, 807–817
Parentheses, annoying 12
Parity bit 1168
Parity-check matrix 851
Parseval’s theorem 602, 603, 654
discrete form 608
Parsimony, maximum 882
Partial abstraction 24
Partial differential equations 1024–1096
advective equation 1032
alternating-direction implicit method (ADI) 1052, 1053, 1065, 1066
amplification factor 1033, 1038
analyze/factorize/operate package 1030
artificial viscosity 1037, 1042
biconjugate gradient method 1030
boundary conditions 1025
boundary value problems 1025–1030, 1053–1058
Cauchy problem 1024
Cayley’s form 1049
characteristics 1024–1026
Chebyshev acceleration 1064
classification of 1024–1030
comparison of rapid methods 1058
conjugate gradient method 1030
Courant condition 1034, 1036, 1038–1040, 1042
Courant condition (multidimensional) 1051
Crank-Nicolson method 1045, 1047, 1049, 1051, 1052
cyclic reduction (CR) method 1054, 1057, 1058
diffusion equation 1024, 1043–1049, 1051, 1052, 1059
Dirichlet boundary conditions 1026, 1045, 1055, 1061, 1063
eLLiptic, defined 1024
error, varieties of 1036–1038
explicit vs. implicit differencing 1033
FACR method 1058
finite difference method 1027
finite element methods 1030
flux-conservative initial value problems 1031–1043
forward Euler differencing 1032
forward time centered space (FTCS) 1032, 1044, 1049, 1059
Fourier analysis and cyclic reduction (FACR) 1053–1058
Gauss-Seidel method (relaxation) 1060, 1061, 1068, 1078
Godunov’s method 1043
Helmholtz equation 1057
high-order methods, caution on 1050
hyperbolic 1024, 1031
implicit differencing 1045
inhomogeneous boundary conditions 1055
initial value problems 1024, 1026
initial value problems, recommendations on 1042
Jacobi’s method (relaxation) 1060, 1061, 1068
Laplace’s equation 1024
Lax method 1034–1036, 1042, 1050, 1051
Lax method (multidimensional) 1050, 1051
matrix methods 1028, 1030
mesh drift instability 1040
Monte Carlo methods 1030
multidimensional initial value problems 1049–1053
multigrid method 1029, 1066–1083
Neumann boundary conditions 1026, 1045, 1056, 1057, 1063
nonlinear diffusion equation 1047
nonlinear instability 1037
numerical dissipation or viscosity 1035
operator splitting 1028, 1052, 1053, 1065
outgoing wave boundary conditions 1026
parabolic 1024, 1043
periodic boundary conditions 1055, 1063
piecewise parabolic method (PPM) 1043
Poisson equation 1024, 1057
rapid (Fourier) methods 620, 1029, 1054
relaxation methods 1028, 1059–1066
Schrödinger equation 1048, 1049
second-order accuracy 1038–1042, 1045
shock 1037, 1042, 1043
sparse matrices from 76
spectral methods 239, 1030, 1083–1096
spectral radius 1061, 1066
stability vs. accuracy 1035
stability vs. efficiency 1027
staggered grids 625, 1057
staggered leapfrog method 1038, 1039
successive over-relaxation (SOR) 1061–1066, 1070
time splitting 1052, 1053, 1065
two-step Lax-Wendroff method 1040
upwind differencing 1037, 1042
variational methods 1030
varieties of error 1036–1038
von Neumann stability analysis 1033, 1034, 1036, 1039, 1045, 1046
wave equation 1024, 1031

see also Elliptic partial differential equations;
Finite difference equations (FDEs)
Partial pivoting 43, 45, 535
Partition-exchange 423, 433
Partitioned matrix, inverse of 81, 82
Party tricks 106, 203
Parzen window 657
Pascal (language) 1
Path integration, for function evaluation 251–254, 318
Path length, minimization of 555–562
PAUP (software) 874
PBCCG (preconditioned biconjugate gradient method) 89, 1030
PC methods see Predictor-corrector methods
PCx (software) 548
PDEs see Partial differential equations
PDF (probability density function) see Statistical distributions
Pearson’s r 745
PECE method 944
Penalty function 541
Pentagon, symmetries of 1174
Percentile 320, 419, 435
Perfect code 852
Period of linear congruential generator 343
Periodic boundary conditions 1055, 1063
Periodogram 653–657, 681, 683
Lomb’s normalized 685–687, 689
variance of 655, 656
Perron’s theorems 221
Perturbation methods for matrix inversion 76–79
Peter Principle 427
Phantom bit 9
Phase error 1036
Phase-locked loop 824
Phi statistic 744
Phillips-Twomey method 1006
PHYLIP (software) 874
Phylogenetic tree see Tree, phylogenetic
\(\pi \), computation of 1185
Pi stepsize control 915
Piecewise parabolic method (PPM) 1043
Pigeonhole principle 387
Pincherle’s theorem 222
Pivot element 43, 46, 47, 967
Pivoting 41, 43–45, 60, 76, 78, 101
and QR decomposition 103, 105
for tridiagonal systems 57
full 43
implicit 44, 51
in LU decomposition 50
in reduction to Hessenberg form 594
in relaxation method 967
Markowitz criterion 535
partial 43, 45, 46, 50, 535
threshold partial 535
Pixel 631, 714, 715, 1010, 1017
Planck’s constant 1048
Plane rotation see Givens reduction; Jacobi transformation (or rotation)
Plane, defined by triangle 1115
Platykurtic distribution 723
Plotting of functions 444, 1160–1163
POCS (projection onto convex sets) 1012
Point 1099–1101
closest approach of line to 1121
distance between two 1099
distance to line 1118
projection into plane 1115
random in triangle 1114
random on sphere 1129, 1130
test if inside box 1100
test if inside polygon 1124
Poisson equation 631, 1024, 1057
Poisson probability function 336–338, 390
as limiting case of binomial 338
deviates from 372–374, 686
moments of 725, 734
semi-invariants of 725
tails compared to Gaussian 778
Poisson process 362, 369, 829, 830
Polak-Ribiere algorithm 489, 517
Poles see Complex plane, poles in
Polishing of roots 459, 465, 471
Polygon 1097, 1122–1127
area 1126
Bolyai-Gerwien theorem 1127
CCW vs. CW 1122
centroid of 1127
constructable by compass/straightedge 1127
covex vs. concave 1122
Jordan curve theorem 1124
pentagon, symmetries of 1174
removal of hidden 1150
routine for classifying 1125
simple vs. complex 1122, 1125
sum of exterior angles 1122
test if point inside 1124
winding number 1122–1124
Polynomial interpolation 110, 118–120
Aitken’s algorithm 118
coefficients for 129–131
in Bulirsch-Stoer method 924
in predictor-corrector method 943
Lagrange’s formula 94, 118, 1089, 1092
multidimensional 132–135
Neville’s algorithm 118, 125, 166, 231, 924
pathology in determining coefficients for 130
Runge phenomenon 1090
smoothing filters 768
see also Interpolation
Polynomials 201–205
algebraic manipulations 203
approximation from Chebyshev coefficients 241, 243
characteristic 469
characteristic, for digital filters 670, 676
characteristic, for eigenvalues of matrix 563, 583
Chebyshev 187
deflation 464–466, 471
derivatives of 202
division 95, 204, 464, 471
evaluation of 201, 202
evaluation of derivatives 202
extrapolation in Bulirsch-Stoer method 922, 924
extrapolation in Romberg integration 166
fitting 94, 129, 241, 243, 768, 788, 797
Index

generator for CRC 1170
ill-conditioned 463
irreducible modulo 2 382
matrix method for roots 469
minimax 235, 248
modulo 2 381, 1169
monic 181
multiplication 203, 204
operation count for 203
order, distinct from degree 1170
orthonormal 181, 1087
parallel evaluation 205
primitive modulo 2 382–386, 406
roots of 227–229, 463–473
shifting of 243
stopping criterion in root finding 467
Population count of bits 16
Population vector 857
Portable random number generator see Random number generator
Positive-definite matrix, testing for 101
Positivity constraints 526, 527
Postal Service (U.S.), barcode 1174
PostScript 1161
Powell's method 489, 502, 509–514
Power (in a signal) 602
Power of 2
 next higher 16, 361
 test if integer is a 16, 611
Power series 201–205, 209–218, 246
 economization of 243, 244
 Padé approximant of 245–247
Power spectral density see Fourier transform; Spectral density
Power spectrum 655
 Bartlett window 657
 data windowing 655–660
 estimation by FFT 652–667
 figures of merit for data windows 658
 Hamming window 658
 Hann window 657
 leakage 655, 656, 658, 662–665
 mean squared amplitude 653
 multitaper methods 662–667
 normalization conventions 652, 653
 overlapping data segments 660–662
 Parzen window 657
 periodogram 653–657
 power spectral density 652
 PSD 652
 Slepian tapers 662–667
 square window 656
 sum squared amplitude 653
 time-integral squared amplitude 653
 variance reduction in spectral estimation 656, 662
 Welch window 658
Power spectrum estimation see Fourier transform; Spectral density
PPM (piecewise parabolic method) 1043
Precedence of operators, in C++ 12
Precision
 floating point 1164
 multiple 1185–1193
Preconditioned biconjugate gradient method (PBCG) 89
Preconditioning, in conjugate gradient methods 1030
Predictive stepsize control 939
Predictor-corrector methods 900, 909, 934, 942–946
 Adams-Bashforth-Moulton schemes 943
 adaptive order methods 946
 compared to other methods 942, 946
 fallacy of multiple correction 943
 functional iteration vs. Newton’s rule 944
 multivariate compared with multistep 945, 946
 Nordsieck method 944
 starting and stopping 944
 stepsize control 943, 944, 946
 with fixed number of iterations 944
Prerequisite relationship 23
Primitive polynomials modulo 2 382–386, 406, 1170
Principal component analysis (PCA) 892
Principal directions 509, 512
Principal solution, of inverse problem 1004
Principal value integrals 178
Prior probability 757, 775, 841, 1005
 smoothness 1006
Prize, $1000 offer revoked 342
Probability see Random number generator; Statistical tests; Statistical distributions
Process loss 658
Product Nystrom method 995
Products, reaction 947
Program(s)
 as black boxes 67, 255, 443, 507
 dependencies 4
 NR not a program library 2
 typography of 14
 validation 5
Programming, NR not a textbook on 2
Projection onto convex sets (POCS) 1011–1013
 generalizations 1013
Projection operator, nonexpansive 1012
Prolongation operator 1068
Proportional betting 758, 760
Proposal distribution 826–828, 835
Protocol, for communications 1168
PSD (power spectral density) see Fourier transform; Spectral density; Power spectrum
Pseudo-random numbers 340–386
Pseudoinverse 70
Pseudospectral method see Spectral methods
Puns, particularly bad 35, 202, 946, 958, 1098
Pure virtual class 34
Pyramidal algorithm 702, 703
Pythagorean theorem 1111
Pythagoreans 494
Index

QO tree 1149–1158
 applications of 1156–1158
 intersecting objects 1150
 use of hash in implementing 1151
QR decomposition 102–106, 483, 484, 486
 and least squares 791
 backsubstitution 103
 operation count 103
 pivoting 103
 updating 105, 106, 483
 use for orthonormal basis 74, 105
 use for random rotation 1130
 see also Eigensystems
Quadratic
 convergence 64, 310, 452, 459, 511, 512, 522, 1185
 equations 10, 227–229, 494, 572
 interpolation 454, 466
 programming 536, 884–886
Quadrature 155–200
 adaptive 155, 167, 194–196, 241, 995
 alternative extended Simpson’s rule 160
 and computer science 1160
 arbitrary weight function 189–191, 995
 Bode’s rule 158
 Cauchy principal values 178
 change of variable in 170–172, 995
 Chebyshev fitting 156, 240, 241
 classical formulas for 156–162
 Clenshaw-Curtis 156, 241, 624, 625
 closed formulas 157–160
 cubic splines 156
 DE rule 174
 error estimate in solution 991
 extended formula of order 1/N³ 160
 extended midpoint rule 161, 167
 extended rules 159–162, 166, 993, 995, 997
 extended Simpson’s rule 160
 extended trapezoidal rule 159, 162
 for improper integrals 167–172, 993–1000
 for integral equations 988, 993
 Fourier integrals 692–699
 fractals and 22
 Gauss-Chebyshev 183, 187, 625
 Gauss-Hermite 183, 995
 Gauss-Jacobi 183
 Gauss-Kronrod 192, 195
 Gauss-Laguerre 183, 995
 Gauss-Legendre 183, 193, 990, 996
 Gauss-Lobatto 191, 192, 195, 241, 624
 Gauss-Radau 191
 Gaussian integration 159, 179–193, 238, 296, 299, 988, 990, 995, 1086–1089
 Gaussian integration, nonclassical weight function 189–191, 995
 IMT rule 173
 infinite ranges 176–178
 Monte Carlo 156, 197, 397–403, 410
 multidimensional 156, 196–199
Newton-Cotes formulas 158, 179
 Newton-Cotes open formulas 158, 159
 open formulas 157–162, 167
 oscillatory function 217
 related to differential equations 155
 related to predictor-corrector methods 943
 Romberg integration 156, 166, 169, 231, 923, 994
 semi-open formulas 160–162
 Simpson’s rule 158, 165, 169, 698, 990, 994, 997
 Simpson’s three-eighths rule 158, 995, 997
 singularity removal 170, 171, 173, 995
 singularity removal, worked example 999, 1000
 TANH rule 173
 trapezoidal rule 158, 160, 162, 166, 173, 175, 178, 695, 698, 989, 993
 using FFTs 156
 variable transformation 172–178
 weight function log x 190, 191
 see also Integration of functions
 Quadrature mirror filter 701, 708
 Quadtree see QO tree
 Quantile
 changes with time 438
 estimation 435
 values 320, 419
 Quantum mechanics, Uncertainty Principle 717
 Quartet puzzling 882
 Quartile value 419
 Quasi-Newton methods for minimization 489, 521–525
 Quasi-random sequence 403–410, 418, 1160, 1168
 for Monte Carlo integration 408, 413, 418
 Halton’s 404
 Sobol’s 404–406
 see also Random number generator
 Quicksort 420, 422–426, 429, 433
 Quotient-difference algorithm 206
 R (programming language) 3
 R-estimates 818
 Racetrack betting 757, 760
 Radial Basis Functions 139–144
 Gaussian 142
 inverse multiquadric 142
 multiquadric 141
 thin-plate spline 142
 Wendland 142
 Radioactive decay 362
 Radix base for floating point arithmetic 592, 1164
 Radix base for floating-point arithmetic 1186, 1192
 Radix conversion 1181, 1185, 1192
 Ramanujan’s identity for π 1193
 Random
 angle variables 364
 bits 380–386
byte 352
point in triangle 1114
point on circle 1131
point on sphere 1129, 1130
rotation matrix 1130, 1131
variables, decorrelating 379
walk 10
walk, multiplicative 329
Random deviates 340–386
angles 364
beta distribution 371
binomial 374–377
Cauchy distribution 367
chi-square distribution 371
exponential 362
F-distribution 371
faster 377
gamma distribution 369
Gaussian 341, 364, 365, 368, 377, 686, 1004
integer range 343
logistic 363
multivariate Gaussian 378, 379
normal 341, 346, 365, 368, 377, 686
Poisson 372–374, 686
quasi-random sequences 403–410, 1160, 1168
Rayleigh 365
squeeze 368
Student’s-t distribution 371
sum of 12 uniform 377
trig functions 364
uniform 341–357
Random number generator
32-bit limited 355–357
Box-Muller algorithm 364
combined generators 342, 345–352
Data Encryption Standard 358–361
Diehard test 345
floating point 354
for everyday use 351
for hash function 387
for integer-valued probability distribution 372
hash function 352
highest quality 342, 351
inheritance 23
lagged Fibonacci 354
linear congruential generator 341, 343, 348
linear feedback shift register (LSFR) 346, 380–386
MLCG 341, 344, 348, 349
multiply with carry method (MWC) 347
NIST-STS test 345
nonrandomness of low-order bits 344
planes, numbers lie on 344
primitive polynomials modulo 2 382
pseudo-DES 358
quasi-random sequences 403–410, 1160, 1168
QuickSort use of 423
random bits 380–386
random byte 352
ratio-of-uniforms method 367–371
recommended methods 345–352
rejection method 365–368
simulated annealing method 551, 552
spectral test 344
subtractive method 354
successor relation 350, 352
system-supplied 341
transformations 342
timings 355
trick for trigonometric functions 364, 367
uniform 341–357
xorshift method 345
Random numbers see Monte Carlo; Random deviates
RANDU, infamous routine 344
Range 67, 68, 70
Rank (matrix) 67
kernel of finite 992
Rank (sorting) 419, 428–431
Rank (statistics) 748–754, 818
Kendall’s tau 751–754
Spearman correlation coefficient 749–751
sum squared differences of 749
Rank-nullity theorem 68
Raphson, Joseph 456
Rate equations 947, 948
Ratio-of-uniforms method for random number generator 367–371
Ratio variable (statistics) 741
Rational Chebyshev approximation 247–251
Rational function 110, 201–205, 245, 248, 670
approximation for Bessel functions 275
approximation for continued fraction 207, 260
as power spectrum estimate 681
Chebyshev approximation 247–251
diagonal 125
evaluation of 204, 205
extrapolation in Bulirsch-Stoer method 922
interpolation and extrapolation using 110, 124–128, 245, 247–251, 922
minimax 248, 249
response of recursive filter 670
Rayleigh deviates 365
RBF see Radial Basis Functions
Reactions, chemical or nuclear 946–954
reaction products 947
Realizable (causal) 668, 670, 671
Rearranging see Sorting
Reciprocal, multiple precision 1190
Record, in data file 428
Recurrence relation 219–223
and continued fraction 222
associated Legendre polynomials 294
Bessel function 219, 274, 275, 278, 283–285
binomial coefficients 258
Bulirsch-Stoer 125
Index

characteristic polynomial of tridiagonal matrix 583, 665
Clenshaw’s recurrence formula 222, 223
continued fraction evaluation convergence 222
cosine function 219, 610
dominant solution 220
exponential integrals 219
gamma function 256
Golden Mean 11
hidden Markov model 861
Legendre polynomials 219
minimal vs. dominant solution 220
modified Bessel function 281
Neville’s 118, 231
orthonormal polynomials 181
parallel evaluation 223, 224
Perron’s theorems 221
Pincherle’s theorem 222
polynomial interpolation 118, 119, 231
random number generator 343
rational function interpolation 125
sequence of trig functions 219
sine function 219, 610
spherical harmonics 294
stability of 12, 220, 222, 223, 275, 278, 282, 294
trig functions 687
weight of Gaussian quadrature 183
Recursive
doubling (parallel method) 223
Monte Carlo integration 410–418
multigrid method 1069
stratified sampling 416–418
Red-black see Odd-even ordering
Reduction of variance in Monte Carlo integration 402, 410
Reed-Solomon code 852, 855
Berlekamp-Massey algorithm 852
syndrome decoding 852
References (explanation) 6
Reflection formula for gamma function 256
Regula falsi (false position) 449
Regularity condition 983
Regularization
compared with optimal filtering 1008
constrained linear inversion method 1006
linear 1006–1013
nonlinear 1018
objective criterion 1009
of inverse problems 1002–1006
Phillips-Twomey method 1006
support vector machines 893
Tikhonov-Miller 1007
trade-off curve 1005
two-dimensional 1010, 1011
zeroth order 1002–1006
see also Inverse problems
Regularizing operator 1004
Rejection method for random number generator 365–368
Relative entropy 756
Relaxation method
automated allocation of mesh points 981–983
computation of spheroidal harmonics 971, 973–977
elliptic partial differential equations 1028, 1059–1066
example 971, 973–977
for algebraically difficult sets 970
for differential equations 957, 964–970
Gauss-Seidel method 1060, 1061, 1068, 1077
internal boundary conditions 983, 984
internal singular points 983, 984
Jacobi’s method 1060, 1061, 1068
successive over-relaxation (SOR) 1061–1066, 1070
see also Multigrid method
Remes algorithms
exchange algorithm 669
for minimax rational function 249
Residual 63, 70, 88
in multigrid method 1067
resize 27
Resolution function, in Backus-Gilbert method 1014
Response function 641–643, 649
Responsibility matrix 842
Restriction operator 1068
Reward, $1000 offer revoked 342
Richardson’s deferred approach to the limit 166, 169, 231, 900, 911, 921, 922, 994, 1072
see also Bulirsch-Stoer method
Richtmyer artificial viscosity 1042
Ridders’ method
for numerical derivatives 231
root finding 443, 449, 452–454
Riemann shock problem 1043
Riemann zeta function 211
Right eigenvalues or eigenvectors 564, 565
Rights management 5
Rise/fall time 659
Robust estimation 723, 778, 818–824
Andrew’s sine 821
average deviation 723
double exponential errors 820
Kalman filtering 824
Lorentzian errors 820
mean absolute deviation 723
nonparametric correlation 748–754
Tukey’s biweight 821
use of a priori covariances 824
see also Statistical tests
Romberg integration 156, 166, 169, 231, 923, 994
Root finding 181, 182, 442–486
advanced implementations of Newton’s rule 486
Bairstow’s method 466, 471
bisection 445, 447–449, 454, 460, 492, 584, 822
bracketing of roots 443, 445–447, 454, 455, 464, 465, 470
Brent’s method 443, 449, 453–456, 459, 786
Broyden’s method 474, 483–486
compared with multidimensional minimization 476, 477
complex analytic functions 466
convergence criteria 448, 475
deflation of polynomials 464, 471
double root 443
eigenvalue methods 469, 470
false position 449, 452, 454
Halley’s method 263, 264, 271, 335, 463
in complex plane 254
in one dimension 442
in relaxation method 964
in shooting method 956, 959
Jenkins-Traub method 470
Laguerre’s method 444, 466–469
Lehmer-Schur algorithm 470
Maehly’s procedure 465, 472
matrix method 469, 470
Muller’s method 466, 473
multidimensional 442, 459
multiple roots 443
pathological cases 445, 457, 464, 474
polynomials 444, 463–473, 563
Ridders’ method 443, 449, 452–454
root polishing 459, 465, 470–473
safe Newton’s rule 460
secant method 449, 454, 466, 500
singular Jacobian in Newton’s rule 486
stopping criterion for polynomials 467
use of minimum finding 443
using derivatives 456
without derivatives 456
zero suppression 473
see also Roots
Root polishing 459, 465, 470–473
Roots
Chebyshev polynomials 233
cubic equations 228
multiple 443, 466
nonlinear equations 442–486
polynomials 444, 464, 563
quadratic equations 227
reflection in unit circle 676
square, multiple precision 1191
see also Root finding
Rosenbrock method 934–940
compared with semi-implicit extrapolation 941
stepsize control 938
Rotation error 10, 11, 1163, 1164
bracketing a minimum 500
conjugate gradient method 1030
eigensystems 572, 573, 582, 584, 586, 591, 594
extended trapezoidal rule 165
general linear least squares 791, 795
graceful 1165
hardware aspects 1164
Householder reduction 581, 582
IEEE standard 1165
least-squares fitting 783, 791
Levenberg-Marquardt method 802
linear algebraic equations 38, 41, 43, 61, 72, 95
linear predictive coding (LPC) 680
magnification of 10, 11, 61
maximum entropy method (MEM) 683
multidimensional minimization 521, 525
multiple roots 464
numerical derivatives 229
recurrence relations 220
reduction to Hessenberg form 594
series 207, 210
straight line fitting 783
variance 724
Row
degeneracy 38
operations on matrix 42, 45
totals 743, 759
RSS algorithm 416, 417
RST properties (reflexive, symmetric, transitive) 440
Runge-Kutta method 900, 901, 907–910, 935, 942, 1096
dense output 915
Dormand-Prince parameters 912, 920
embedded 911, 936
FSAL (first-same-as-last) 913
high-order 907–910, 912, 920
implementation 916–920
number of function evaluations 912
stepsize control 910–920
Runge phenomenon 1090
Rybicki, G.B. 96, 130, 183, 303, 634, 689, 717
Sampling
a distribution 825
importance 411, 412, 414
Latin square or hypercube 409, 410
Markov chain Monte Carlo 825
recursive stratified 416–418
stratified 412–414
uneven or irregular 685, 771
Sampling theorem 178, 239, 605, 653
for numerical approximation 717–719
Sande-Tukey FFT algorithm 616
Savitzky-Golay filters
for data smoothing 766–772
for numerical derivatives 232, 769
Scallop loss 658
Schrödinger equation 1048, 1049
Schrage's algorithm 344
Schultz's method for matrix inverse 64, 716
Scilab (software) 3
Scope, temporary 20, 21
Searching
 an ordered table 114–118
 selection 431–439
 with correlated values 115
Secant method 443, 449, 454, 466, 500
 Broyden's method 483–486
 multidimensional (Broyden's) 474, 483–486
Second Euler-Maclaurin summation formula 167
Second order differential equations 928, 930
Seed of random number generator 343
Selection 419, 431–439
 by partition-exchange 433
 find m largest elements 434
 for median 822
 heap algorithm 434
 in place 432, 439
 incremental quantile estimation 435
 largest or smallest 434
 operation count 433, 439
 single-pass 432
 use to find median 726
Semi-implicit Euler method 934, 940
Semi-implicit extrapolation method 934, 935, 940, 941
 compared with Rosenbrock method 941
 stepsize control 941
Semi-implicit midpoint rule 940
Semi-invariants of a distribution 725
Sentinel, in Quicksort 424, 433
Separable kernel 992
Separation of variables 292
Sequence, alignment of by DP 559–562
Sequential quantile estimation 435
 changes with time 438
Series 209–218
 accelerating convergence of 177, 211–218
 alternating 211, 216
 asymptotic 210, 216
 Bessel function K_v 288
 Bessel function Y_v 284, 285
 Bessel functions 210, 274
 divergent 210, 211, 216
 economization 243–245
 ε algorithm 212
 Euler's transformation 211, 212
 exponential integral 267, 269
 Fresnel integral 298
 geometric 211, 214
 hypergeometric 252, 318
 hyperlinear convergence 211
 incomplete beta function 270
 incomplete gamma function 259
 Laurent 681, 682
Levin transformation 214
linear convergence 211
logarithmic convergence 211
relation to continued fractions 206
Riemann zeta function 211
roundoff error in 207
sine and cosine integrals 301
sine function 210
Taylor 456, 510, 900, 911, 965, 969
transformation of 211, 212
van Wijngaarden's algorithm 217
Set bits, counting 16
Shaft encoder 1166
Shell algorithm (Shell's sort) 420–423
Shepard interpolation 140
Sherman-Morrison formula 76–79, 94, 483, 534
Shifting of eigenvalues 563, 585, 596
Shock wave 1037, 1042, 1043
Shooting method
 computation of spheroidal harmonics 979
 example 971, 977–981
 for differential equations 956, 959–961, 971, 977–981
 for difficult cases 962
 interior fitting point 962
 Side information 760, 761
 Sidelobe level 658
Sign bit in floating point format 8
SIGN utility function 17
Signal, bandwidth limited 605
Significance (statistical) 727
 of 2-d K-S test 763, 764
 one- vs. two-sided 747
 peak in Lomb periodogram 686, 687
 two-tailed 730
Similarity transform 566, 567, 570, 592, 594
Simplex
 defined 502
 method in linear programming 489, 502, 526–536, 548
 method of Nelder and Mead 489, 502–507, 552, 821
 use in simulated annealing 552
Simplex method see Linear Programming
Simpson's rule 156, 158, 160, 165, 169, 698, 990, 994
Simpson's three-eighths rule 158, 995, 997
Simulated annealing see Annealing, method of simulated
Simulation see Monte Carlo
Sinc expansion 178
Sine function
 evaluated from $\tan(\theta/2)$ 219
 recurrence 219
 series 210
Sine integral 297, 300–302
 continued fraction 301
 routine for 301
 series 301
see also Cosine integral
Sparse linear equations 39, 75–92, 534, 544, 548, 937
Sparse transform see Fast Fourier transform (FFT); Fourier transform
Singleton’s algorithm for FFT 637, 638
Singular value decomposition (SVD) 39, 65–75
and least squares 65, 70, 73, 249, 791, 793
and rational Chebyshev approximation 249
approximation of matrices 74, 75
basis for nullspace and range 68
confidence levels from 816, 817
covariance matrix 817
fewer equations than unknowns 73
for inverse problems 1003
in minimization 512
more equations than unknowns 73, 74
of square matrix 69–73
relation to eigendecomposition 569, 570
use for ill-conditioned matrices 71, 73, 563
use for orthonormal basis 74, 105
Singularities
in integral equations 995–1000
in integral equations, worked example 999, 1000
in integrands 167, 173, 195, 995
of hypergeometric function 252, 253, 318
removal in numerical integration 170, 171, 173, 995
Singularity, subtraction of the 996
Six-step framework, for FFT 615
size 27
Skewness of distribution 723, 725
Slack variables 529, 538, 888
Slepian functions 662–667
SMBus 1168
Smith-Waterman algorithm 562
Smoothing
data 129, 766–772
in multigrid methods 1069
operator in integral equations 987
Smoothness prior 1006
sn function 316
Sobol’s quasi-random sequence 404–406
Soft-decision decoding 851–855
error correction 855
minimal trellis 853
trellis 853, 856
Viterbi algorithm 854
Software engineering 2
Sorting 419–441
bubble sort cautioned against 420
compared to selection 431
eigenvectors 575
Heapsort 420, 426–428, 434
index table 419, 426, 428–431
operation count 420, 422, 423
Quicksort 420, 422–426, 429, 433
rank table 419, 431
ranking 428–431
Shell’s method 420–423
straight insertion 420, 423, 575
Source code, obtaining NR 3
Spectral analysis see Fourier transform; Periodogram
Spectral density
one-sided PSD 602
periodogram 681, 683
power spectral density (PSD) 602, 603, 652
power spectral density per unit time 603
power spectrum estimation by MEM 681–684
two-sided PSD 603
see also Power spectrum
Spectral lines, how to smooth 767
Spectral methods 239, 1030, 1083–1096
analytic example 1084
and discontinuities 1083
and Gaussian quadrature 1087–1089
as finite difference methods 1093
cardinal functions 1089–1091
choice of basis functions 1085
collation method 1086
contrasted with finite differencing 1083, 1085
differentiation matrix 1091
efficiency of 1083
exponential convergence of 1085
Galerkin method 1086
grid point representation 1090
interpolation of solution 1093
method of lines 1095
multidimensional equations 1095
nonlinear equations 1094
pseudospectral 1088
tau method 1086
variable coefficient equations 1094
worked example 1094, 1095
Spectral radius 1061, 1066
Spectral test for random number generator 344
Spectrum see Fourier transform
Speech recognition by hidden Markov model 866
Sphere 1097, 1128–1130
2- vs. 3-sphere 1128
angular coordinates 1128
find all points within a 1109
intersection with line 1121
random point on 1129, 1130
Index

Surface area in n-dimensions 1128
Volume in n-dimensions 1129
Spherical Bessel functions 283
routine for 291
Spherical coordinates 1128
Spherical harmonics 292–297
basis functions for spectral methods 1085
fast transform 295, 297
orthogonality 292
routine for 294
stable recurrence for 294
table of 293
see also Associated Legendre polynomials
Spheroidal harmonics 971–981
boundary conditions 972, 973
normalization 973
routines for 975–977
Spline 111
cubic 120–124
gives tridiagonal system 122
interpolating 148
natural 122
operation count 122
two-dimensional (bicubic) 135
Spread matrix 1015
Square root
complex 226
multiple precision 1191
Square window 656
Squeeze, for computing random deviates 368
Stability 8–12
and stiff differential equations 932
Courant condition 1034, 1036, 1038, 1042, 1051
diffusion equation 1045, 1046
in quadrature solution of Volterra equation 994
mesh drift in PDEs 1040
nonlinear 1037
of Clenshaw’s recurrence 223
of Gauss-Jordan elimination 41, 43
of implicit differencing 932, 1046
of Markov model 858, 859
of polynomial deflation 464, 465
of recurrence relations 220, 222, 223, 275, 278, 282, 294
partial differential equations 1026, 1033
von Neumann analysis for PDEs 1033, 1034, 1036, 1039, 1045, 1046
see also Accuracy
Stabilized Kolmogorov-Smirnov test 739
Stabilizing functional 1004
Stage, trellis 857
Staggered leapfrog method 1038, 1039
Standard (probably) errors 727, 781, 783, 786, 787, 790, 794, 807–817
Standard deviation
of a distribution 722, 723
of Fisher’s z 747
of linear correlation coefficient 746
of sum squared difference of ranks 750
Standard Template Library (STL) containers 421
State change vector 947
Statistical distributions 320–339
beta 333, 334
binomial 338, 339
Cauchy 322, 323
chi-square 330, 331
density, change of variables in 362
exponential 326, 327
F-distribution 332, 333
full conditional 827
gamma 331, 332
Kolmogorov-Smirnov 334–336
logistic 324–326
lognormal 328, 329
Lorentzian 322
normal 320, 321
Poisson 336–338
Student’s 323, 324
Weibull 327, 328
Statistical error 778
Statistical tests 720–772
Anderson-Darling 739
average deviation 723
bootstrap method 809, 810
chi-square 731–734, 742–745
contingency coefficient C 743, 744
contingency tables 741–745, 753, 758
correlation 721
Cramer’s V 743, 744
difference of distributions 730–740
difference of means 727
difference of variances 728, 730
entropy measures of association 758–761
F-test 728, 730
Fisher’s z-transformation 746
general paradigm 720
Kendall’s tau 749, 751–754
Kolmogorov-Smirnov 731, 736–738, 762, 819
Kuiper’s statistic 739
kurtosis 723, 725
L-estimates 818
linear correlation coefficient 745–748
Lucy’s Y² and Z² 735
M-estimates 818
mean 721–723, 725, 726
mean absolute deviation 723
measures of association 721, 741, 759
measures of central tendency 721–726
median 722, 725, 726, 818
mode 722, 725, 726
moments 721–726
nonparametric correlation 748–754
p-value test 720
Pearson’s r 745
periodic signals 686, 687
phi statistic 744
R-estimates 818
rank correlation 748–754
robust 723, 749, 818–824
semi-invariants 725
shift vs. spread 739
significance 727
significance, one- vs. two-sided 730, 747
skewness 723, 725
small numbers of counts 734, 735
Spearman rank-order coefficient 749–751, 819
standard deviation 722, 723
strength vs. significance 727, 741
Student’s t 727–730, 746
Student’s t, for correlation 746
Student’s t, paired samples 729
Student’s t, Spearman rank-order coefficient 749
Student’s t, unequal variances 728
sum squared difference of ranks 749
tail test 720
Tukey’s trimean 818
two-dimensional 762–766
variance 721, 722, 724, 725, 729
Wilcoxon 818
see also Error; Robust estimation

Statistics, higher-order 604

Steele’s method
Bessel functions 283, 287
continued fractions 207
Steepest descent method 516
in inverse problems 1011
Step
doubling 162, 174, 177, 910
tripling 168, 169
Stieltjes, procedure of 189
Stiff equations 901, 931–941
Kaps-Rentrop method 934
methods compared 941
predictor-corrector method 934
Rosenbrock method 934–940
scaling of variables 935
semi-implicit Euler method 940
semi-implicit extrapolation method 934, 935
semi-implicit midpoint rule 940
Stiff functions 111, 500
Stirling’s approximation 256, 1017
STL see Standard Template Library
Stochastic simulation 946–954
when not to use 953
Stock market prices 329
Stoermer’s rule 928
Stopping criterion
multigrid method 1078
polynomial root finding 467
Storage
band-diagonal matrix 58
sparse matrices 82–87
Straight injection 1071
Straight insertion 420, 423, 575
Straight-line fitting 780–785

errors in both coordinates 785–787
robust estimation 822–824
Strassen’s fast matrix algorithms 107
Stratified sampling, Monte Carlo 412–414, 416
Strings, aligning by DP 559–562
struct see Class; Object
Student-t deviates 371
Student’s probability distribution 323, 324
Cauchy as special case 323
normal as limiting case 323
Student’s t-test
for correlation 746
for difference of means 727–730
for difference of means (paired samples) 729
for difference of means (unequal variances) 728
for difference of ranks 750
Spearman rank-order coefficient 749
Sturmian sequence 583
Sub-random sequences see Quasi-random sequence
Subtraction, multiple precision 1186
Subtractive method for random number generator 354
Successive over-relaxation (SOR) 1061–1066
bad in multigrid method 1070
Chebyshev acceleration 1064
choice of overrelaxation parameter 1062–1064
Successor relation, random generators 350
Sum-product algorithm 867
Sum squared difference of ranks 749
Sums see Series
Superpower 1897A 762
Support vector machine 883–898
dual formulation 886–889
kernel examples 891
kernel trick 889–892
linearly separable data 884
Mangasarian-Musicant variant 893–898
margin 884
regularization parameter 888, 893
SVMlight package 893
SVD see Singular value decomposition (SVD)
SVM see Support vector machine
SWAP utility function 17
Symbol, of operator 1070, 1071
Syndrome decoding
coset leader 852
error-correcting codes 852
Golay code 852
Hamming code 852
perfect code 852
Reed-Solomon code 852
Synthetic division 95, 202, 243, 464, 471
Systematic errors 778

Tableau (interpolation) 118, 125
Tail test 720
Tangent function, continued fraction 206
TANH rule 173
 infinite range 176
Taylor series 229, 456, 510, 900, 911, 944, 965, 969
Templates (C++) 17, 22, 26, 419, 421
Thermodynamics, and simulated annealing 550
Thin-plate spline 142
Three-dimensional array 36
Threshold partial pivoting 535
throw statement 30
Tides 677
Tikhonov-Miller regularization 1007
Time domain 600
Time reuse 952
Time splitting 1052, 1053, 1065
Timing, C routine for 355
TNT parsimony software 882
Trellis 853, 856
 directed graph 856
 maximum likelihood 854
 stage 857
Trellis coded modulation 855
Triangle 1097, 1111–1116
 angle between two 1116
 area of 1111
 centroid or barycenter 1113
 circumscribed circle (circumcircle) 1112
 in 3 dimensions 1114
 inscribed circle (incircle) 1112
 intersection with line 1121
 plane defined by 1115
 random point in 1114
Triangulation
 and interpolation 132
 applications of 1141–1149
 definition 1131
 Delaunay 1097, 1131–1149
 hashing and 1136
 incremental construction 1134
 interpolation using 1141
 largest minimum angle property 1134
 minimum weight 1134
 number of lines and triangles in 1132
Tridiagonal matrix 56–61, 188, 567, 598
 cyclic 79, 80
 eigenvalues 576, 577, 583–589, 665
 from cubic spline 122
 from operator splitting 1066
 in alternating-direction implicit method (ADI) 1066
 in cyclic reduction 1057, 1058
 parallel solution 57
 reduction of symmetric matrix to 576–583
 with fringes 1028
see also Matrix
Trigonometric functions, $\tan(\theta/2)$ as minimal 219
 functions, recurrence relation 219, 687
 interpolation 110
 solution of cubic equation 228
Trimming error 173
Truncation error 11, 173, 500, 910, 911, 1163
 exponentially decreasing 238
 in multigrid method 1077
 in numerical derivatives 229
try 30
Tukey’s biweight 821
Tukey’s trimean 818
Turbo codes 855
Twenty questions 755, 758, 761
Twin errors 1174
Two-dimensional K–S test 762–766
Two-point boundary value problems 900, 955–984
automated allocation of mesh points 981–983
boundary conditions 955, 962, 977
difficult cases 962
eigenvalue problem for differential equations 958, 973, 977–981
free boundary problem 958, 983
grid (mesh) points 957, 964, 981–983
internal boundary conditions 983, 984
internal singular points 983, 984
linear requires no iteration 961
multiple shooting 964
problems reducible to standard form 958
regularity condition 983
relaxation method 957, 964–970
relaxation method, example of 973–977
shooting method 956, 959–961, 971, 977–981
shooting method, example of 977–981
shooting to a fitting point 962
singular endpoints 962, 972, 978
see also Elliptic partial differential equations
Two-sided exponential error distribution 820
Two-sided power spectral density 603
Two-step Lax-Wendroff method 1040
Types used in NR 4, 25, 26
Uchar 25
Uint 25
Ullong 25
Ultrametric tree 871
Uncertainty coefficient 761
Uncertainty principle 717
Underflow, in IEEE arithmetic 9, 1165
Underrelaxation 1062
Uniform deviates see Random deviates, uniform
Unit-offset array 36
Unitary (function) 1048, 1049
Unitary (matrix) see Matrix
Universal Product Code (UPC) 1174
Unnormalized value 9
Unsupervised learning 842, 868
UPC checksum 1174
UPGMA 877
Upper Hessenberg matrix see Hessenberg matrix
Upwind differencing 1037, 1042
U.S. Postal Service barcode 1174
Utility functions 17
V-cycle 1069
valarray class 25
Validation of Numerical Recipes procedures 5
Valley, long or narrow 503, 509, 512, 516, 550, 552
Van Cittert’s method 1011
Van Wijngaarden-Dekker-Brent method see Brent’s method
Vandermonde matrix 93–96, 130
Variable length code 1176
Variable metric method 489, 521–525
compared to conjugate gradient method 521
Variable step-size integration 155, 167, 901, 924, 928–930, 938, 941, 943, 944, 946
Variance(s)
of distribution 721, 722, 725, 728–730
pooled 727
reduction of (in Monte Carlo) 402, 410
statistical differences between two 726–730
two-pass algorithm for computing 724
see also Covariance
Variational methods, partial differential equations 1030
Variogram 145, 837
various models for 837
VeeDoub, VecInt, etc. 26
Vector
angle between two 1120, 1121
C++ vector class 24
class for 24–29
contiguous storage for 27
of matrices 36
suffix _I, _O, _IO 26, 32, 36
see also Array, NRvector
VEGAS algorithm for Monte Carlo 414–416
Viterbi’s algorithm for checksums 1174
Viete’s formulas for cubic roots 228
Viscosity
artificial 1037, 1042
numerical 1035, 1042
Viterbi decoding 850–855
as a min-sum algorithm 867
Bayesian nature of 868
compared to forward-backward algorithm 867
compared to hidden Markov model 867, 868
call state defined 850
directed graph 850
training 867
transition 850
with arbitrary transition probability 867
with parameter re-estimation 867
Volterra equations 988
adaptive stepsize control 995
analog with ODEs 993
block-by-block method 994
first kind 988, 993
nonlinear 988, 994
second kind 988, 992–995
unstable quadrature 994
von Neumann-Richtmyer artificial viscosity 1042
von Neumann stability analysis for PDEs 1033, 1034, 1036, 1039, 1045, 1046
Voronoi diagram 1097, 1142–1146
avoiding obstacles 1147
Vowellish (coding example) 1176, 1181
W-cycle 1069
Wave equation 292, 1024, 1031
Wavelet transform 699–716
and Fourier domain 707, 708
appearance of wavelets 706, 707
approximation condition of order p 701
coefficient values 703, 704
contrasted with Fourier transform 699, 700, 711
Daubechies wavelet filter coefficients 700, 702, 704, 706–708, 715
detail information 701, 702
discrete wavelet transform (DWT) 702–706
DWT (discrete wavelet transform) 702–706
eliminating wraparound 703, 709
fast solution of linear equations 715, 716
filters 707, 708
for integral equations 989
image processing 713, 715
inheritance 23
inverse 703
JPEG-2000 712
Lemarie’s wavelet 708
mother-function coefficient 703
mother functions 700
multidimensional 712, 713
nonsmoothness of wavelets 707
of linear operator 715
on the interval 709
pyramid algorithm 702, 703
quadrature mirror filter 701
smooth information 701, 702
truncation 711, 712
wavelet filter coefficient 700, 703
wavelets 700, 706, 707
Wavelets see Wavelet transform
Weber function 254
Webnotes, Numerical Recipes 4
Weibull probability distribution 327, 328
Weighted Kolmogorov-Smirnov test 739
Weighted least-squares fitting see Least-squares fitting
Weighting, full vs. half in multigrid 1071
Weights for Gaussian quadrature 179, 180, 995
nonclassical weight function 189–191, 995
Welch window 658
while 13e iteration 14
Wiener filtering 645, 649–652, 673, 674, 767
compared to regularization 1008
Wiener-Khinchin theorem 602, 674, 682
Wilcoxon test 818
Winding number 1122–1124
Window function 660
Bartlett 657
flat-topped 658, 659
Hamming 658
Hann 657
Parzen 657
Slepian 662
square 656
Welch 658
Winograd Fourier transform algorithms 616
Woodbury formula 80, 81, 94
Wordlength 8, 12
WPGMA 877
Wraparounding
object for accessing vector 613
order for storing spectrum 611, 628, 632
problem in convolution 643
Wronskian, of Bessel functions 283, 284, 287
X-ray diffraction pattern, processing of 1012
Xorshift random number generator 345
Yale Sparse Matrix Package 76
Z-transform 670, 681
Z-transformation, Fisher’s 746
Zapf Dingbats 1162
Zealots 1020
Zebra relaxation 1070
Zero contours 474
Zero-offset array 36
Zero-order regularization 1002–1006
Zip code, barcode for 1174
Ziv-Lempel compression 1176
ZooAnimal (OOP example) 23
Zoom transforms 615