Chapter Twelve
RANDOM SAMPLING

1. INTRODUCTION.

In this-chapter we conslder the problem of the selection of a random sample
of slze k from a set of n objects. This 1s also called sampling without replace-
ment since duplicates are not allowed. There are several 1ssues here which should
be clarified in this, the Introductory section.

1. Some users may wish to generate an ordered random sample. Not unexpect-
edly, It Is easler to generate unordered random samples. Thus, algorithms
that produce ordered random samples should not be compared on an equal
basls with other algorithms.

2. Sometimes, n Is not known, and we are asked to grab each object In turn
and make an Instantaneous decislon whether to Include it in our random
sample or not. This can best be visualized by consldering the oblects as
belng glven in a llnked list and not an array.

3. In nearly all cases, we worry about the expected tlme complexity as a func-
tlon of £k and n. In typlcal sltuations, n 1s much larger than &k, and we
would llke to have expected tlme complexitles which are bounded by a con-
stant tlmes &k, unlformly over n.

4. The space required by an algorithm Is defined as the space required outslde
the orlginal array of n records or objects and outslde the array of k records
to be returned. Some of the algorithms In this chapter are bounded
workspace algorithms, l.e. the space requlrements are O (1).

The strategles for sampling can be partitloned as follows: (1) classlcal sampling:
generate random objects and Include them In the sample if they have not already
been plcked; (i) sequentlal sampling: generate the sample by traversing the col-
lection of oblects once and maklng Instantaneous declslons durlng that one pass;
(111) oversampling: by means of a simple technlique, obtaln a random sample (usu-
ally of Incorrect size), and In a second phase, adjust the sample so that it has the
right slze. Each of these strategles has some very competitlve algorithms, so that
no strategy should a priori be excluded from contention.

612 XII.1I.INTRODUCTION

We assume that the set of oblects Is {1,2, ..., n}. If the objects are
different, then these Integers should be constdered as polnters (Indices) to the
oblects In an array.

2. CLASSICAL SAMPLING.

2.1. The swapping method.

Assume that the ob)ects are given In array form: A [1}, ..., A[n]. Then, If
we are allowed to permute the oblects, random sampling Is extremely simple. We
can choose an object uniformly and at random, and swap It with the last object.
If we need another object, we choose one unlformly from among the first n -1
oblects, and swap with the n—-1st object, and so forth. This algorithm takes time
proportional to k, and O (1) extra space Is needed. The disadvantage Is that the
sample 1s not ordered. Also, record swapplng is sometimes not allowed. We are
allowed to swap pointers though, but thls would then require ©(n) extra space
for polnters. If there are no records to beglin with, then the space requirement 1s
Q(n). Formally we have:

Swapping method

FOR t :=n DOWNTO n -k +1 DO
Generate a uniform (0,1] random variate U .
X [U]
Swap (A [X],A [1])

RETURN A [n-k+1), ..., A [n)

The swapplng method 1s very convenlent. If we set kt=n, then the returned
array Is a random permutation. Thus, the swapping method Is based upon the
principle that generating a random subset of slze £ 1s equivalent to generating
the first k£ entrles In a random permutation.

XI1.2.CLASSICAL SAMPLING 613

2.2. Classical sampling with membership checking.

If we are not allowed to swap Information, then we are forced to check .
whether a certaln element Is not already plcked. The checklng can be achleved in
a number of ways via different data structures. Regardless of the data structure,
we can formulate the algorithm:

Classical sampling with membership checking

S «@ (S will be the set of random integers to be returned)
FOR ¢:=1 TO k DO
REPEAT
Generate a random integer Z in {1, ..., n }.

UNTIL NOT Member (Z) (Member returns true if an integer is already picked, and
false otherwise.)

S—Su{Z}
RETURN S

The data structure used for S should support the followlng operations: Inltialize
empty set, Insert, member. Among the tens of possible data structures, the fol-
lowing are perhaps most representative:

A. The bit-vector Implementation. Defilne an array of n blts, which are Initially
set to false, and which are switched to true upon lnsertlon of an element.

B. An unordered array of chosen elements. Elements are added at the end of
the array.

C. A binary search tree of chosen elements. The expected depth of the k-th ele-

ment added to the tree Is ~2log(k). The worst-case depth can be as large as
k.

D. A helght-balanced blnary tree or 2-3 tree of chosen elements. The worst-case
depth of the tree with £ elements is O (log(k)).

E. A bucket structure (open hashing with chalning). Partition {1, . . ., n } Into
k about equal Intervals, and keep for each Interval (or: bucket) a linked list
of all elements chosen until now,

F. Closed hashing Into a table of size a bit larger than k.

It 1s perhaps useful to give a list of expeéned complexitles of the varlous opera-
tlons needed on these data structures. We also Include the space requlrements,
with the conventlon that the array of k£ Integers to be returned is In any case

614 XII.2.CLASSICAL SAMPLING

Included In the space requlrements.

DATA STRUCTURE | Initialize Insert Member | Space requirements
Bit vector n 1 1 n
Unordered array 1 k
Binary search tree log(k) log(k)
Height~-balanced tree log(k) log(k)
Buckets 1 1
Closed hashing 1 1

Lol Rl IS P I
S ER S O B

Timewlse, none of the suggested data structures Is better than the bit-vector data
structure. The problem with the bit-vector Implementation Is not so much the
extra storage proportlonal to n, because we can often use the already existing
records and use common programming tricks (such as changing signs etcetera) to
store the extra blts. The problem Is the re-initlallzation necessary after a sample
has been generated. At the very least, this will force us to consider the selected
set S, and turn the &£ blts off agaln for all elements In S. Of course, at the very
beglnning, we need to set all n blits to false.

The first important quantity is the expected number of lterations in the sam-
pling algorithm.

Theorem 2.1.

The expected number of iterations In classical sampling with membership
checking is

k n

=1

n
For k==n, thisils n i,-fvn log(n). When £ < [-g—], this number 1s < 2k.
¢

Proof of Theorem 2.1.

Observe that to generate the 7-th random Integer, we carry out a serles of
n_.
Independent experiments, each having probabllity of success __z—_}—_l_' This
n

ylelds the glven expected value. The asymptotic result when k=n 1is trivially
true. The general upper bound Is obtalned by a standard Integral argument:
bound the sum from above by
n
1

f==n~k-+1 L

n
<nf—l 4 [Lg

= Gz
n—[ﬂl-i-l n—K+1
2

XII.2.CLASSICAL SAMPLING 815

IA

IA

IA

2+2(k-1) = 2k .|}

What matters here Is that the expected time Increases no faster than O (k)

when k£ s at most half of the sample. Of course, when & Is larger than -723-, one

should really sample the complement set. In particular, the expected time for the
bit-vector Implementation 1s O (k). For the tree methods, we obtaln O (k log(k)).
If we work with ordered or unordered lists, then the generation procedure takes
expected time O (k2). Finally, with the hash structure we have expected time
O (k) provided that we can show that the expected time of an Insert or a delete
Is O (1) (apply Wald's equatlon). Assume that we have a bucket structure with
mk equal-sized Intervals, where m >1 Is a design Integer usually equal to 1. The
Interval number 1s an Integer between 1 and mk, and Integer 2 €{1, ..., n} s

hashed to interval |-Zmk]|. Thus, If the hash table has k elements, then every
n

1
Interval has about — elements. The expected number of comparisons needed to
m

check the membershlp of a random Integer In a hash table containing ¢ elements
Is bounded from above by E (1+ny) where ny 1s equal to the number of elements
ln the Interval Z, and Z 1s a random Interval Index, chosen with probability pro-
portional to the cardinality of the Interval. The 1" accounts for the comparison
spent checklng the endmarker In the chaln. Thus, the expected number of com-
parisons is not greater than

n
mp (1)
14 21_—;1,——12]'
J=

n
(=——+1)
ik
n
3 1
= 1 ——f— .
mk n

IA

) k 1
In the worst case (+=k), this upper bound Is 1+-£1—+ <2+—n-z-' The upper

"=
bound Is very loose. Nevertheless, we have an upper bound which 1s clearly O (1).
Also, If we can afford the space, It pays to take m as large as possible. One

616 XI1.2.CLASSICAL SAMPLING

possible hashing algorithm Is given below:

Classical sampling with membership checking based on a hash table

This algorithm uses three arrays of integers of size k. An array of headers Head
f1}, ... ,Head (k) is initially set to 0. An array pointers to successor elements
Next[1], . . ., Next[k] is also set to 0. The array A (1], . . ., A [k] will be returned.

FOR 1:=1 TO k DO
Accept «— False
REPEAT
Generate a random integer Z uniformly distributed-on {1, ..., n }.

Bucket «1+ \E(—Z;:B-S

Top «— Head [Bucket]
IF Top=0
THEN
Head [Bucket] +—¢
Alk)l—Z
Accept «— True
ELSE
WHILE A [Top]%Z AND Top5£0 DO
(Top, Topx*) «— (Next [Top)], Top)
IFF Top==0 THEN
Ali)l—2
Next | Top# | «¢
Accept «— True
UNTIL Accept
RETURN A[l],...,Alk]

The hashing algorithm requires 2k extra storage space. The array returned Is not
sorted, but sorting can be done In linear expected time. We give a short formal
proof of this fact. It Is only necessary to travel from bucket to bucket and sort
the elements within the buckets (because an order-preserving hash functlon was
used). If this Is done by a simple quadratic method such as bubble sort or selec-
tlon sort, then the overall expected time complexity Is O (k) (for the overhead
costs) plus a constant times

mk)
E(YyYnm).
=1
But n; Is hypergeometric with parameters n,l,k where | 1s the number of

Integers in the 7-th bucket (this 1s about -Ek—), l.e. for each 7,
m

XI1.2.CLASSICAL SAMPLING 617
)
) Ck~g
[n
k

{
We know that F (n;)=-—1-c-—, and thls tends to L as k,n —o0, and it does not
n m

1k
exceed ——-+—1; In any case. Simple computations show that
m

P(nij=jy)=

n -k n—lﬂ

Var (n;) = n-1 n n

1 1k
which In turn tends to — as k,n —oo, without exceeding —+— for any value
m m n

of k,m,n. Combining thls, we see that the the expected tlme complexity is a
constant tlmes

~ k(14— .
m
It 1s not greater than a constant times
1 k 1k k 1k
mk | (= 4=+ (—+—=) | = k(1+—=)1+—+=) .
m n m n n m n

These expressions show that 1t 1s Important to take m large. One should not fall
Into the trap of lettlng m Increase with k£ ,n because the set-up time Is propor-
tlonal to mk, the number of buckets. The hashing method with chalnlng, as
given here, was lmplicitly given by Muller (1958) and studled by Ernvall and
Nevalalnen (1982). Its space inefficlency Is probably lts greatest drawback.
Closed hashing with a table of slze £ has been suggested by Nljenhuls and WIIf
(1975). Ahrens and Dileter (1985) conslder closed hashing tables of slze mk where
now m s a number, not necessarily Integer, greater than 1. See also Teuhola and
Nevalalnen (1982). It Is perhaps Instructive to glve a brief description of the algo-
rithm of NijJenhuls and WIIf (1975). An unordered sample A [1], ..., A [k] will
be generated, and an auxillary vector Next[1], . . . , Next[k] of links Is needed In
the process. A polnter p polnts to the largest Index ¢ for which A [¢] Is not yet
speclfled.

618 XII.2.CLASSICAL SAMPLING

Algorithm of Nijenhuis and Wilf

[SET-UP]
p+—k-+1
FOR ¢ :=1 TO k DO A [{]~0
[GENERATOR]
REPEAT
Generate a random integer X uniformly distributed on 1, ... ,n. Set

Bucket+X mod k +1.
IF A [Bucket)==0
THEN A [Bucket]+X ,Next[Bucket}—0
ELSE
WHILE 4 [Bucket]5£X DO
IF Next[Bucket]=0
THEN
REPEAT p +p -1 UNTIL p =0 OR A [p }]=0
Next[Bucket}«—p
Bucket«p
ELSE Bucket«-Next[Bucket]

UNTIL p =0
RETURN A {1}, ..., A k)

The algorithm of Nljenhuls and WIIf differs slightly from standard closed hashing
schemes because of the vector of links. The links actually create small linked lists
within the table of slze k. When we look at the cost assoclated with the algo-
rithm, we note first that the expected number of uniform random varlates needed
Is at the same as for all other classical sampling schemes (see Theorem 2.1). The
search for an empty space (p «p —1) takes tlme O (k). The search for the end of
the linked list (Inner WHILE loop) takes on the average fewer than 2.5 llnk
accesses per random varlate X, Independent of when X Is generated and how
large £ and n are (Knuth, 1969, pp. 513-518). Thus, both expected time and
space are O (k).

XII.2.CLASSICAL SAMPLING 619

2.3. Exercises.

1. The number of elements n,; that end up In a bucket of capaclty [In the
bucket method 1s hypergeometrically distributed with parameters n,k,l.

. Q .

Pn=1)= ——— 0<:<min(k,l).
[n

k
In the text, we needed the expected value and varlance of n,. Derlve these
quantlitles.

2. Prove that the expected tlme In the algorithm of Nijenhuls and WIIf is
O (k).

3. Weighted sampling without replacement. Assume that we wish to gen-
erate a random sample of slze k£ from {1,...,n}, where the Integers
1, ..., n have welghts w;. Drawing an Integer from a set of integers Is to
be done with probabllity proportional to the welght of the integer. Using
classlcal sampling, this Involves dynamlcally updating a selection probabllity
vector. Wong and Easton (1980) suggest setting up a binary tree of helght
O (log(n)) In time O (n) In a preprocessing step, and using thls tree In the
Inversion method. Generating a random Integer takes time O (log(n)), while
updating the tree has a similar cost. Thls leads to a method with worst-case
tlme O (klog(n)+n). The space requlrement Is proportlonal to n (space Is
less critlcal because the vector of welghts must be stored anyway). Develop
a dynamlc structure based upon the allas method or the method of gulde
tables, which has a better expected time performance for all vectors of
welghts.

3. SEQUENTIAL SAMPLING.

3.1. Standard sequential sampling.

In sequentlal sampling, we want an ordered sample of slze £ drawn from
1, ..., n. An unordered sample can always be obtalned by one of the methods
described In the previous section, and In many cases (e.g. the hashing methods),
sorting can be done extremely efficlently In expected time O (k). What we will do
In thls chapter is different. The methods described here are fundamentally one
pass methods In which the random sample Is constructed In order. There are two
possible strategles: first, we could grab each Integer in 1, ..., n In turn, aad
decide whether to take 1t or leave 1t. It turns out, as we will see below, that for
each declslon, we need only compare a new uniform random variate with a cer-
taln threshold. Unfortunately, thls standard sequentlal sampling algorithm takes

620 XI1.3.SEQUENTIAL SAMPLING

time proportional to n: it becomes particularly lnefficient when k£ Is much
smaller than n. The second strategy circumvents this problem by generating the
spacings between successlve Integers. Assume for a moment that each spacing can
be generated In expected tlme O (1) uniformly over all parameter values. Then
the spacings method takes expected time O (k). The problem here Is that the dis-
tribution of the spacings Is rather compllcated; 1t also depends upon the partlally
generated sample.

In the standard sequentlal sampling algorithm of Jones (1962) and Fan,
Muller and Rezucha (1962), the probabllity of selectlon of an Integer depends
upon only two quantities: the number of Integers remalning to be selected, and
the number of Integers not yet processed. Initially, these quantlties are £ and n.
To keep the notatlon simple, we will let £ decrease durlng execution of the algo-
rithm.

Standard sequential sampling

FOR 1 :=1 TO n DO

Generate a uniform [0,1) random variate U.

U< k THEN select 7, k «—k -1
n-t+1

k
Integer 1 1s selected with probabllity — as can easlly be seen from the following
n

argument: there are
[n
k

ways of choosing a subset of slze £ from 1, . . ., n. Furthermore, of these,
I n -1

k-1

Include integer 1. The probablllty of Inclusion of 1 should therefore be the ratlo
of these two numbers, or k /n. Note that thls argument uses only k£, the number
_of remalning Integers to be selected, and n, the number of Integers not yet pro-
cessed. It can be used Inductively to prove that the algorithm is correct. Note for

example that If at any time In the algorithm k£ =n, then each of the remalning n
Integers 1n the flle Is selected with probabllity one. If at some point k==0, no
more Integers are selected. The tlme taken by the algorithm Is proportional to n,

but no extra space Is needed. For small values of n, the standard sequentlal algo-
rithm has llttle competition.

XII.3.SEQUENTIAL SAMPLING 621

3.2. The spacings method for sequential sampling.

We say that a random varlable X has the distributton D (k,n) when X s
distributed as the m)nlmal Integer In a random subset of size k£ drawn from
{1, ..., n}. The spacings method for sequential sampling Is defined as follows:

The spacings method for sequential sampling

Y +«0 (Y is a running pointer)
REPEAT

Generate a random integer X with distribution D (k,n).
k«—k-1, n +~n-X (update parameters).
Select Y+X,set Y=Y +X

UNTIL k=0

In the algorithm, the orlginal values of £ and n are destroyed - thls saves us the
trouble of having to Introduce two new symbols. If we can generate D (k,n) ran-
dom varlates In expected time O (1) uniformly over £ and n, then the spacings
method takes expected time O (k). The space requirements depend of course on
what 1s needed for the generation of D (k,n). There are many possible algorithms
for generating a D (k,n) random variable. We dlscuss the following approaches:

1. The Inversion method (Devroye and Yuen, 1981; Vitter, 1984).

2. The ghost sample method (Devroye and Yuen, 1981).

3. The rejection method (Vitter, 1983, 1984).

The three methodologies will be discussed in different subsections. All technliques
require a conslderable programmling effort when !mplemented. In cases 1 and 3,
most of the energy ls spent on numerlcal problems such as the evaluation of

ratlos of factorlals. Case 2 avolds the numerlcal problems at the expense of some

addltional storage (not exceeding O (k)). We will first state some propertles of
D (k,n).

622 XII.3.SEQUENTIAL SAMPLING

Theorem 3.1.
Let X have distributlon D (k,n). Then

[n—i
k
PX>1)= —— ,0<:<n-k,
[}
k
2]
k-1
PX=t)= —— 1<:<n-k+1.

[Z

Proof of Theorem 3.1.

Argue by counting the number of subsets of k out of n, the number of sub-
sets of k out of n—7, and the number of subsets of k-1 out of n—1. ||

Theorem 3.2.

The random varlable X =min(X,, ..., X;) 1s D (k,n) distributed when-
ever X,, ..., X; are Independent random varlables and each X; 1s uniformly
distributed on {1, . . . , n—k+1}.

Proof of Theorem 3.2.
For 0<: <n-k, notlce that

[n—z
‘ kon—k4i-5 Elp_i—j k
P(Y>i)= 7725120 J = :
() J.I;II n -~k 41 j]':__'_lo n-yg [TL

k

which was to be shown.]

From Theorem 3.2, we deduce without further work:

XII.3.SEQUENTIAL SAMPLING 623

Theorem 3.3.

Let X be D (k,n) distributed, and let Y be the minimum of £ 1ld uniform
{1, ..., n-k+1} random varlables. Then X 1s stochastlcally greater than Y,
that s,

P(X>i)>P(Y>i) ,alli.

Furthermore, related to the closeness of X and Y Is the followling collection
of Inequalities.

Theofem 3.4.
Let X and Y be as In Theorem 3.3. Then

n+1 n-k-+1
- > D —————
k+1 EX) 2z B(Y) 2 k41

In particular,

0< E(XY»E(Y)<1.

Proof of Theorem 3.4.

In the proof, we let U,, ..., U, be 1ld uniform [0,1] random varlables. Note

that
n+1
1 nk+1 (n—t k+1 n+1
EX)= [n] 'E:‘l' /c—-l] = [n] ~ k41
k k
Also,
E(Y)2Z (n-k+1)E(min(U,, . .., U})) = %‘1‘ '
Clearly,
EX»rE(Y)< —— 1

k+1 -

624 XII.3.SEQUENTIAL SAMPLING

3.3. The inversion method for sequential sampling.
The distrlbution function F for a D (k,n) random varlable X 1s

-[—ni--i_-
[+

Thus, If U 1s a unlform [0,1] random varlable, the unique integer X with the
property that

F(X-1) < UIS F(X)

F(i)=P(X<i)=1-

0<:<n-k

has distribution function F, and is thus D (k,n) distributed. The solution can be
obtained sequentially by computing F (1), F (2),... untll for the first tlme U is

exceeded. The expected number of iteratlons Is E(X) = Zii
time complexity depends upon how F Is computed. If F (i) 1s computed from

scratch (Fan, Muller and Rezucha, 1962), then time proportional to k+1 s
needed, and X 1s generated In expected time proportional to n. This Is unac-
ceptable as 1t would lead to an O (nk) sampling algorithm. Lucklly, we can com-
pute F' recursively by noting that

. The expected

[n-—z’—l

1-F (i +1) _ k n—i—k

1-F (1) n—1 n-i
"

Using this, plus the fact that 1-F (0)=1, we see that X can be generated In
n+1

k+1
erated In expected time proportl—gnal to n. This 1s stlll rather Inefflclent, More-
over, the recursive computation of F leads to unacceptable round-off errors for
even moderate values of £ and n. If F Is recomputed from scratch, one must be
careful in the handling of ratlos of factorials so as not to Introduce large cancela-
tion errors In the computations. Thus, help can only come If we take care of the
two key stumbling blocks:

expected time proportional to , and that a random sample can thus be gen-

1. The efficient computation of F .

2. The reduction of the number of Iteratlons In the solution of
FX-1)<ULF(X).

These lssues are dealt with In the next sectlon, where an algorithm of Devroye
and Yuen (1981) Is given.

XI1.3.SEQUENTIAL SAMPLING 625

3.4. Inversion-with-correction.

A reduction in the number of lterations for solving the Inverslon lnequallties
Is only posslble If we can guess the solutlon pretty accurately. This Is possible
thanks to the closeness of X to Y as defilned In Theorems 3.3 and 3.4. The ran-
dom varlable Y Introduced there has dlstrlbur,;on functlon G where

N
G(i)=P(Y§i)=1—[%§] , 0Li<n-k .

Recall that F' <G and that 0<E (X -Y)<1. By Inversion of G, Y can be gen-
erated qulte slmply as

Y \(1—(1—U)7‘-)(n-k F1)+1)

where U Is the same uniform [0,1] random varlate that will be used In the inver-
slon Inequallties for X . Because X Is at least equal to Y, It suffices to start look-
Ing for a solutlon by trylng Y,Y +1,Y +2,.... This, of course, Is the principle of

Inverslon-with-correctlon explained In more detall in section II1.2.5. The algq-
rithm can be summarized as follows:

Inversion-with-correction (Devroye and Yuen, 1981)

IF n =k
THEN RETURN X «1
ELSE

Generate a uniform [0,1] random variate U.

1
X ‘_(1—(1—U) kyn -k +1)+15
Te—1-F(X)
WHILE 1-U <T DO

n-k-X
T~T —
X~=X~+1

RETURN X

The polnt here Is that the expected number of iteratlons In the WHILE loop iIs
E(X-Y), which Is less than or equal to 1. Therefore, the expected time taken by
the algorithm s a constant plus the expected tlme needed to compute F at one

point. In the worst possible scenarlo, F 1s computed as a ratio of products of
Integers since

626 XII.3.SEQUENTIAL SAMPLING

This takes time proportlonal to k. The random sampling algorithm would there-
fore take expected time proportional to k2. Interestingly, if F can be computed
In tlme O (1), then X can be generated In expected time O (1), and the random
sampling algorithm takes expected time O (k). Furthermore, the algorithm
requlres bounded workspace.

If we accept the logarithm of the gamma function as a functlon that can be
computed In constant time, then F' can be computed In time O (1) via:

log(1-F (7)) = log(T'(n -1 +1))+log(l'(n -k +1))
-log(T(n -1 -k +1))+log(l(n +1)) .

Of course, here too we are faced with some cancelation error. In practlce, If one
wants a certain fixed number of signlficant diglts, there 1s no problem computing
log(T") In constant time. From Lemma X.1.3, one can easlly check that for n >8,
the serles truncated at k =3 gives 7 significant digits. For n <8, the logarithm of
7 can be computed directly. There are other ways for obtainlng a certaln accu-
racy. See for example Hart et al. (1968) for the computation of log(l’) as a ratlo
of two polynomilals. See also section X.1.3 on the computation of factorlals in
general.

A final polnt about cancelatlon errors In the computation of 1—(1—U)1/"
_ when k£ s large. When F 1s an exponential random varlable, the following two
random varlables are both distributed as 1-—(1—-U)1/" :
E

1—-e k

E
tanh(s%-)
—©f5 -
1+tanh(—2—];')

The second random varlable iIs to be preferred because it Is less susceptible to
cancelation error.

3.5. The ghost point method.

Random varlables with distribution D (k,n) can also be generated by
exploliting speclal propertles such as Theorem 3.2. Recall that X is distributed as

1+ \mln((n——lc TV, (n-k+2)U,, . . ., (n—k +Ic)Uk)}

where U,, . . ., U, are Independent uniform [0,1] random varlables. Direct use of
this property leads of course to an algorithm taking tlme ©(k). Therefore, the
random sampling algorithm corresponding to 1t would take time proportional to
k2. What distingulshes the algorithm from the inversion algorithms is that no
heavy computations are involved. In the ghost polnt (or ghost ’sample) method,
developed In Devroye and Yuen (1981), the fact that X Is almost distributed as

XII.3.SEQUENTIAL SAMPLING 627

the minimum of k¥ 11d random variables is exploited. The expected time per ran-
dom varlate 1s bounded from above uniformly over all k£ <pn for some constant
p€E(0,1). Unfortunately, extra storage proportional to k Is needed.

We colned the term "ghost polnt” because of the following embedding argu-
ment, In which X Is written as the minimum of ¥ Independent random variables,
which are linked to k£ 11d random varlables provided that we treat some of the 1id
random variables as non-existent. The lld random varlables are X,, ..., X},

each unlformly distributed on {1, ..., n—-k+1}. If we were to define X as the
minimum of the X; 's, we would obtaln an Incorrect result. We can correct how-

ever by treatlng some of the X;'s as ghost polnts: deflne Independent Bernoulll

random varlables Z,, ..., Z, where P(Z; =1)=—z-;-;-1?. The X;'s for which
n -k -+1
Z,-=1 are to be deleted. Thus, we can deflne an updated collectlon of random

varlables, X/, . . ., X}/, where
{X,— If Z; =0

X' =\nks1 10 Z=1"

]

Theorem 3.5.

For the constructlon glven above,
X =min(X/, ..., X)

is D (k,n) distributed.

Proof of Theorem 3.5.
Fix 0<t¢ <n-k. Then,

k
PX>:)= JIP(X{/>1)

i=1
k
= J1 (P(Z;=1)+P (Z;=0)P (X; >Fk))
J=1
k . .
. J-1 n-k+1 n-k+1-1
~]El(n—k+i n-k+j n-k+1)
ok n-k+j-i
”El n—k+j
n—t
k

1)

628 XII.3.SEQUENTIAL SAMPLING

Every X; has an equal probabllity of being the smallest. Thus, we can keep
generating unlformly random lIntegers from 1, ..., k, without replacement of
course, untll we find one for which Z;==0, l.e. untll we find an index for which
the X,- Is not a ghost polnt. Assume that we have skipped over m ghost polnts In
the process. Then the X; In question Is distributed as the m +1-st smallest of the
original sequence X ,, . . ., X; . The polnt Is that such a random varlable can be
generated In expected time O (1) because beta random varlates can be generated
In O (1) expected time. Before proceeding with the expected time analysis, we
glve the algorithm:

The ghost point method

[SET-UP]
An auxiliary linked list L is needed, which is initially empty. The maximum list size is k.
The stack size is Size.
Size +-0.
[GENERATION]
REPEAT

REPEAT

Generate an integer W uniformly distributed on {1, ..., k}.

UNTIL W isnotin L

"Add W to L, Size «— Size +1.

Generate a uniform [0,1) random variate U.

W-1
>
UNTLIL U > TTETW

Generate a beta (Size,k -Size+1) random variable B (note that B is distributed as the
"Size” smallest of &k 1id uniform [0,1] random variables.)

RETURN X « |1+ B (n -k +1)]

‘We refer to the sectlon on beta random varlate generation for uniformly fast
generators. If a beta varlate generator Is not locally avallable, one can always

generate B as where G ,G' are Independent gamma (W) and gamma

_G
G+G’
(k=W 41) random varlables respectively.

For the analysls, we assume that k¥ <pn where p€(0,1) Is a constant. Let [NV
denote the number of W random varlates generated In the Inner REPEAT loop.
It will appropriately measure the complexity of the algorithm provided that we
can check membership In l1st L in constant time.

XII.3.SEQUENTIAL SAMPLING 629

Theorem 3.8.
For the ghost point algorithm, we have
EWN)< ¢ “’”2
(1-p)

where ¢ >0 Is a unlversal constant and & <pn where p&(0,1). Furthermore, the

expected length of the list L, l.e. the expected value of Size, does not exceed
1

1-p

Proof of Theorem 3.6.

It T is the eventual value of Slze, then

k
EN|T)= —_—
V1T) 121 k-1 41
Therefore, for constant a E(O 1),

E(N)= E(Elk =) -5 — k+1P(T>z) (by a change of [)

=1
k
< E(T? —_—
(),Z_Dl zz(lc—z +1)

2 i' -—1-
< E(T M—_r;mr.z 2t k,->ZLJakJ "2)

< B(TH(—"— + k(2 +f—
- 8(1-a) (a/c)2 2 T2

— BT+ L+ L
8(1—-a) ka? a
which is approximately minimal when
Ve
T+V8
The upper bound Is thus not greater than a constant times F (T 2%). But T Is sto-
chastically smaller than a geometric random varlable with probabllity of success
ﬁi-ﬂZl—p. Thus, E(T)<1/(1-p) and
n

2 1 2 p _ 14+p
B S O 0 T Wy

630 XII.3.SEQUENTIAL SAMPLING

The value of the constant ¢ can be deduced from the proof. However, no
attempt was made to obtaln the best possible constant there. The assumptlon
that membership checking in L can be done in constant time requires that a bit
vector of k flags be used, Indicating for each integer whether 1t Is Included In L
or not. Settlng up the bit vector takes time proportional to k. However, this cost
1s to be born Just once, for after one varlate X s generated, the flags can be reset
by emptylng the list L . The expected time taken by the reset operatlon Is thus
equal to a constant plus the expected length of the list, which, as we have shown
In Theorem 6, Is bounded by 1/(1-p). For the global random sampling algorithm,
the total expected cost of setting and resetting the blt vector does not exceed a
constant times k.

Fortunately, we can avold the blt vector of flags altogether. Membership
checking In list L can always be done In time not exceeding the length of the list.
Even with thls grotesquely inefficlent implementation, one can show (see exer-
clses) that the expected time for generating X s bounded uniformly over all
k<pn.

The issue of membership checking can be sidestepped If we generate Integers
wlthout replacement by the swapping method. Thls would requlre an additional
vector Initlally set to 1, . . ., k. After X s generated, thils vector s slightly per-
muted - 1ts first " Slze” members for example constitute our list L . This does not
matter, as long as we keep track of where integer k£ 1s. To get ready for generat-
Ing a D (k-1,n) random varlate, we need only swap k& with the last element of
the vector, so that the first k-1 components form a permutation of 1, . .., k-1.
Thus, fixing the vector between random varlates takes a constant tlme. Note also
that to generate X, the expected time 1s now bounded by a constant times the
expected length of the list, which we know lIs not greater than 1/(1-p). This Is
due to the fact that the Inner loop of the algorlthm is now replaced by one loop-
less sectlon of code.

When k£ >pn, one should use another algorithm, such as the following plece
taken from the standard sequentlal sampling algorithm:

X+0
REPEAT

Generate a uniform random variate U.
XeX+1

k
[~ S
UNTIL U T

RETURN X

The expected number of uniform [0,1] random varlates needed by this algorithm

Is BE(X)= Z:: S_-%S-—l-. The comblnation of the two algorithms depending
4

XII.3.SEQUENTIAL SAMPLING 631

upon the relatlve sizes of £ and n ylelds an O (1) expected tlme algorithm for
generating X . The optlmal value of the threshold p will vary from tmplementa-
tlon to lmplementation. Note that If a membership swap vector Is used, 1t Is best
to reset the vector after each X Is generated by traversing the list In LIFO order.

3.6. The rejection method.

The generation of D (k,n) random varlates by the rejectlon method creates
speclal problems, because the probabllities p; contaln ratlos of factorials. When-
ever we evaluate p;, we can use one of two approaches: p; 1s evaluated In con-
stant time (thls, in fact, assumes that the logarithm of the I" function Is avallable
In constant time, and that we do glve up our Infinlte accuracy because a Stirling
serles approximatlon Is used), and p; 1s computed In time proportional to k +1
(l.e. the factorlals are evaluated expllcitly). With the latter model, called the
expllclt factortal model, 1t does not suffice to find a dominating probability vector
g; Which satisfles

p; < cq;

for some constant ¢ Independent of k,n. We could Indeed still end up with an
expected time complexity that Is not uniformly bounded over k,n. Thus, In the
expliclt factorlal model, we have to find good dominating and squeeze curves

1
which wlll allow us to effectively avold computing p; except perhaps about O (—I-C-)

percent of the time. Because D (k,n) Is a two-parameter famlly, the deslgn s
qulte a challenge. We wlll not be concerned with all the detalls here, just with
the flavor of the problem. The detalled development can be found in Vitter
(1984). Nearly all of thils sectlon 1s an adaptatlon of Vitter’s results. Gehrke
(1984) and Kawarasakl! and Sibuya (1982) have also developed rejection algo-
rithms, similar to the ones discussed In thls sectlon.

At the very heart of the design Is once agaln a collection of Inequalltles.
Recall that for a D (k,n) random variable X,

n——i}
k-1
pp =PX=i)=——m (a<i:<n-k+1).

[Z

632 XIL.3.SEQUENTIAL SAMPLING

Theorem 3.7.
We have

hi#)<p < ¢19,(1+1)

where
k 1
hii) = = |1-—2t=—2 <[<n—
(1) n[n_k+1] 1<i<n-k+1),
. — n
V7 k41
k 1 k-1
:(0) = £ [1-2 (1<z <n+1).
n n
Also,
ho(i) < pi < cog,(i+1)
where

t~1
h2(z')=-§[1—-—l-c,;1—-—) 1<i<n-k+1),
n

n-t+1
¢, = K. n1
2 k-1 n
k-1 k-1
N _ Cu>1.
92(t) n~1[1 n—l] (+21)

Note that ¢, Is a density In z, and that ¢ 2 Is a probabllity vector In 7.

Proof of Theorem 3.7.
Note that
k k-2
n—k+1 IT

Jj=0
k {n——z’
n-k+1 n
k k-1
T ee———— 1__
_n—lc-f—l(n)

= ¢,9,(¢+1) .

]

p; = :
n-j
k-1

Furthermore,

] k 1-1
hali) = E[I_n—k+1]

k-1

< EFEnkoitot;
T njis, n-k+1+4j

-

XII.3.SEQUENTIAL SAMPLING 633

k k-2
]1_—_‘[0n—1]
=P -

Thls concludes the first half of the proof. For the second half, we argue simllarly.
Indeed, for ¢ > 1,

ki-2 p-k- n-k-y
pi = 11 S ——
" j=o =7
$-1
<55
- -1
k' n-1 k-1 [k-1]"1
= 1-
k-1 n n-1 n-1
== C,o0,(1).
Furthermore,
. k n—k—i+2} B k2 n-k-g
h = - — L — p,
1) n[n—1+1 - njl;Ion‘—l-j ri ‘M

Random varlate generators based upon both groups of inequallities are now
easy to flnd, because ¢, Is baslcally a transformed beta density, and ¢, Is a
geometric probabllity vector. In the case of g,, we need to use relection from a
contlnuous density of course. The expected number of lteratlons In case 1 Is
¢,=n /(n -k +1) (which Is uniformly bounded over all k,n with k¥ <pn, where

p€(0,1) 1s a constant). In case 2, we have ¢,= k_n-t

, and this 1s uniformly
bounded over all ¥ >2 and all n >1.

634 XII.3.SEQUENTIAL SAMPLING

First rejection algorithm

REPEAT

Generate two iid uniform [0,1] random variates U,V .
1

Y —1+n (1—UT) (Y has density ¢,)
X—lrl]
IFX<n-k+1
THEN
X-1 *?
nk+1 | Rk 41]
n 1 Y-1

Accept —{V <

n
IF NOT Accept THEN

Px

Accept +— |V < —m—eere
[c19.(Y)

]

UNTIL Accept
RETURN X

Second rejection algorithm

REPEAT
Generate an exponential random variate £ and a uniform [0,1] random variate V.
X~ {—E /log(l—-:-cl—:-i-)] (X has probability vector g,)

IFX<n-k+1

THEN
X-1
- k)?—a—l
Accept —[V < | —222 T2]
k-1
1.—
n-1

IF NOT Accept THEN
Px

Accept — [V < —em
[T cpg (X))

]

UNTIL Accept
RETURN X

XII.3.SEQUENTIAL SAMPLING 635

3.7. Exercises.
1. Assume that in the standard sequentlal sampling algorithm, each element is
chosen with equal probablliity -:— The sample slze 1s a blnomlal (n ,ﬁ) ran-
n

dom varlable N. Show that as k —oco,n —co,n -k —co, we have

T n
P(N=Fk) 2wk (n-k)

2. Assume that k& <pn for some fixed p€(0,1). Show that If the ghost polnt
algorithm 1s used to generate a random sample of slze £ out of n, the
expected time is bounded by a function of p only. Assume that a vector of
membership flags 1s used In the algorithm, but do not switch to the standard
sequential method when durlng the generation process, the current value of
k temporarlly exceeds p tlmes the current value of n (as Is suggested In the
text).

3. Assume that in the ghost point algorithm, membership checklng 1s done by
traversing the llst L . Show that to generate a random varlate X with distri-
bution D (k,n), the algorithm takes expected tlme bounded by a function of

— only.
n

4. It X 1s D (k,n) distributed, then
(n +1)(n -k)k
(k +2)(k +1)?

5. Conslder the explicit factorlal model In the rejection algorithm. Noting that
the value of py can be computed in time min(k,X +1), find good upper
bounds for the expected time complexity of the two relectlon algorithms
given In the text. In particular, prove that for the first algorithm, the
expected tlme complexlty 1s uniformly bounded over k <pn where p&€(0,1) Is
a constant (Vitter, 1984).

Var (X) =

4. OVERSAMPLING.

4.1. Definition.

If we are glven a random sequence of k wuniform order statistlcs, and
transform 1t vla truncation into a random sequence of ordered Integers In
{1, ..., n}, then we are almost done. Unfortunately, some Integers could appear
more than once, and 1t Is nécessary to generate a few more observatlons. If we
had started with lc1>lc uniform order statistics, then with some luck we could
have ended up with at least k£ different integers. The probability of this Increases
rapldly with k,. On the other hand, we do not want to take k; too large, because
then we will be left with quite a bit of work trylng to ellmlinate some values to
obtaln a sample of preclsely slze k. Thls method is called oversampling. The

636 XI1.4.OVERSAMPLING

maln Issue at stake Is the cholce of k£, as a function of ¥ and n so that not only
the total expected time is O (k), but the total expected time ls approximately
minlmal. One addlitional feature that makes oversampling attractive 1s that we
wlll obtaln an ordered random sample. Because the method Is baslcally a two
step method (unlform sample generator, followed by excess eliminator), it is not
Included In the sectlon on sequential methods.

The oversampling algorithm

REPEAT
Generate U< -+ <Uy), the order statistics of a uniform sample of size k, on
[0,1].
Determine X; «- il-{-—nU(,-)} for all 7, and construct, after elimination of duplicates,
the ordered array X, . . ., X(x -

UNTIL K,>k

Mark a random sample of size K,~k of the sequence Xy, ..., X(K,) by the standard

sequential sampling algorithm.
RETURN the sequence of k£ unmarked X;’s.

The amount of extra storage needed 1s K 1“k . Note that this Is always bounded
by k,-k. For the expected tlme analysls of the algorlthm, we observe that the
uniform sample generation takes expected tlme c, lcl, and that the ellmination
step takes expected tlme c, K ,. Here ¢, and c, are posltlve constants. If the
standard sequentlal sampling algorithm Is replaced by classical sampling for ellm-
Inatlon (l.e., to mark one Integer, generate random Integers on {1, ..., K,}

untll a nonmarked Integer Is found), then the expected tlme taken by the elimi-
nation algorithm ls

‘What we should also count In the expected tlme complexlty Is the probabllity of
accepting a sequence. The results are comblned in the following theorem:

XI1.4.OVERSAMPLING 637

Theorem 4.1.
Let ¢, ,c, be as deflned above. Assume that n >k and that

k =k +(k +a)/log(%)
for some constant ¢ >0. Then the expected tlme spent on the uniform sample is
E(N)c, k,

where E (IV) Is the expected number of iteratlons. We have the following lnequal-
lty:

1 1
= <
EW) PK,>k) = 1-¢-0

The expected tlme spent marking does not exceed c,k,;, which, when
a=0 (lc),—k-——»O, 1s asymptotic to ¢, k. If classical sampling Is used for marking,
then 1t Is ngt greater than

__ﬁ_ k+a

k+1 n.
1 —
og(k)

Proof of Theorem 4.1.
The expression for the expected time spent generating order statlstles is
based upon Wald's equatlon. Furthermore, E (IV)=1/P (K ,>k). But
ky ky

P (K, <k) < [Z] ["f;] = [%]

%) =

-a

i

=6

The only other statement In the theorem requiring some explanation 1s the state-
ment about the marking scheme with classlcal sampling. The expected time spent
dolng so does not exceed ¢, times

E (K -k Ky K. >k
(K-)m! 1=k)

< (k ,—k)k,
- k+1

638 XII.4.OVERSAMPLING

Once agaln, we see that unlformly over k <pn, the expected time Is
bounded by a constant times &, for all fixed p€(0,1) and for all cholces of a that
are elther fixed or vary with & in such a manner that a =0 (k). We recommend
that ¢ be taken large but flxed, say a==10. Note that in the speclal case that

n
T o0 @ =O (k), k,~k. Thus, the expected time of the marking sectlon based

upon classlical sampling Is o (k£), l.e. 1t Is asymptotically negligible. Also, If ¢ —oo,
E (N)—1 for all cholces of n,k. In those cases, the main contributlons to the
expected tlme complexity come from the generatlon of the k, uniform order
statistics, and the elimination of the marked values (not the marking itself).

4.2. Exercises.
1. Show that for the cholce of k; given In Theorem 4.1, we have E (N)—1 as

n .,k —co , £—>p€(0,1). Do thls by proving the exlstence of a unlversal con-
n

stant A depending upon p only such that E (N)< 1+—4——.

v

5. RESERVOIR SAMPLING

5.1. Definition.

There Is one particular sequentlal sampling problem deserving speclal atten-
tlon, namely the problem of sampling records from large (presumably external)
files with an unknown total population. While £ 1s known, n Is not. Knuth
(1969) glves a partlcularly elegant solution for drawing such a random sample
called the reservolr method. See also Vitter (1985). Imagine that we assoclate
with each of the records an Independent uniform [0,1] random variable U;. If the
object is simply to draw a random set of slze k, It suffices to pick those k records
that correspond to the k largest values of the U;’s. This can be done sequen-
tlally:

XII.5.RESERVOIR SAMPLING 639

Reservoir sampling

[NOTE: S is a set of pairs (¢,U;).]
FOR 1:=1 TO k DO
Generate a uniform [0,1] random variate U;, and add (1,U;) to S. Keep track of the
pair (m ,U,,) with the smallest value for the uniform random variate.
t «~k 41 (¢ is a record counter)
WHILE NOT end of file DO
Generate a uniform [0,1] random variate U;.
U >U,
THEN
Delete (m ,U,,) from 5.
Insert (¢,U;)in S.
Find a new smallest pair (m ,U,).
1141
RETURN all integers ¢ for which (¢,U;)€S.

The general algorithm of reservoir sampling glven above returns Integers
(Indlces); 1t 1s trivial to modify the algorithm so that actual records are returned.
It 1s clear that n uniform random variates are needed. In addltion, there 1s a cost
" for updating S. The expected number of deletlons in S (which Is equal to the
number of Insertions minus k) is

n
53 P((+,U;) Is inserted In S')

=k +1

n
= 3
$=k+1

£
:

- klog(—%)+o (1)

as k —o0o0. Here we used the fact that the first n terms of the harmonlic serles are
log(n)+~+o0 (1/n) where ~ Is Euler's constant. There are several possible Imple-
mentatlons for the set S. Because we are malnly interested In ordinary insertlons
and deletions of the minimum, the obvious cholce should be a heap. Both the
expected and worst-case tlmes for a delete operation In a heap of slze k£ are pro-
portional to log(k) as k —oo. The overall expected tlme complexity for deletions
Is proportional to

k xog<%)xog<k)

as k —oo. This may or may not be larger than the 6(n) contribution from the
uniform random varlate generator. With ordered or unordered llnked lists, the

640 XII.5.RESERVOIR SAMPLING

time complexity Is worse. In the exerclse section, a hash structure explolting the
fact that the Inserted elements are uniformly distributed is explored.

5.2. The reservoir method with geometric jumps.

In some appllcations, such as when records are stored on a sequential access
device (e.g., a magnetlc tape), there Is no way that we can avold traversing the
entire file. When the records are in RAM or on a random access device, 1t Is pos-
sible to sklp over any number of records In constant time: In those cases, 1t
should be possible to get rid of the f§(n) term In the time complexity. Given
(m,U,,), we know that the walting tlme untll the occurrence of a uniform value
greater than U, Is geometrically distributed with success probabllity 1-U, . It

can be generated as |(—F /log(U,,)| where E Is an exponential random varlate.

The corresponding record-breaking value Is uniformly distributed on [U,, ,1].
Thus, the reservolr method with geometric jumps can be summarlzed as follows:

Reservoir sampling with geometric jumps

[NOTE: S is a set of pairs (¢,U;).]
FOR 1 :=1 TO k DO

Generate a uniform [0,1} random variate U;, and add (¢ ,U;) to S . Keep track of the
pair (m ,U,,) with the smallest value for the uniform random variate.

t «—k (¢ is a record counter)
WHILE True DO

Generate an exponential random variate E .
t i+ [—E Jog(U,,)] .
IF ¢ not outside file
THEN
Generate a uniform [U,, ,1) random variate U;.
Delete (m ,U,) from S.
Insert (¢,U;)in S.
Find a new smallest pair (m ,U,).
ELSE RETURN all integers ¢ for which (¢ ,U;)€S .

The analysls of the previous section about the expected tlme spent updating S
remains valid here. The difference 1s that the 6(n) has disappeared from the plc-

ture, because we only generate uniform random varlates when Insertions in S are
needed.

XII.5.RESERVOIR SAMPLING 641

- 5.3. Exercises.

1. Deslgn a bucket-based dynamlc data structure for the set S, which ylelds a

total expected tlme complexity for /N Insertions and deletlons that Is

o (Nlog(k)) when N,k —oo. Note that Inserted elements are uniformly dis-

tributed on (U, ,1] where U, 1s the minimal value present In the set. Inl-

© tlally, S contalns £ 1ld uniform [0,1] random varlates. For the heap lmple-
mentatlon of S, the expected time complexity would be 6(NV log(k)).

