
Chapter Twelve
RANDOM SAMPLING

1. INTRODUCTION.
In thls.chapter we conslder the problem of the selectlon of a random sample

of slze k from a set of n objects. Thls 1s also called sampllng wlthout replace-
ment slnce dupllcates are not allowed. There are several lssues here whlch should
be clarlfled ln thls, the lntroductory sectlon.
1.

2.

3.

4.

Some users may wlsh to generate an ordered random sample. Not unexpect-
edly, I t 1s easler to generate unordered random samples. Thus, algorlthms
that produce ordered random samples should not be compared on an equal
basls wlth other algorlthms.
Sometlmes, n Is not known, and we are asked to grab each obJect In turn
and make an lnstantaneous declslon whether to lnclude I t In our random
sample or not. Thls can best be vlsuallzed by conslderlng the obJects as
belng glven In a llnked llst and not an array.
In nearly all cases, we worry about the expected tlme complexity as a func-
tlon of IC and n . In typlcal sltuatlons, n 1s much larger than k , and we
would llke to have expected tlme complexltles whlch are bounded by a con-
stant tlmes k , unlformly over n .
The space requlred by an algorltlim 1s deflned as the space requlred outslde
the orlglnal array of n records or objects and outslde the array of k records
to be returned. Some of the algorlthms in thls chapter are bounded
workspace algorlthms, 1.e. the space requlrements are 0 (1).

The strategles for sampllng can be partltloned as follows: (1) classlcal sampllng:
generate random objects and lnclude them In the sample If they have not already
been plcked; (11) sequential sampllng: generate the sample by traversing the col-
lectlon of objects once and malclng lnstantaneous declslons durlng that one pass:
(111) oversampllng: by means of a slmple technlque, obtaln a random sample (usu-
ally of lncorrect slze), and In a second phase, adJust the sample so that I t has the
rlght slze. Each of these strategles has some very competltlve algorlthms, so that
no strategy should a prlorl be excluded from contentlon.

612 XII.1.INTRODUCTION

We assume that the set of obJects 1s {1,2, . . . , n } . If the obJects are
dlfferent, then these lntegers should be consldered as polnters (lndlces) to the
obJects In an array.

2. CLASSICAL SAMPLING.

2.1. The swapping method.
Assume that the objects are glven In array form: A [l], . . . , A [n 1. Then, If

we are allowed to permute the obJects, random sampllng 1s extremely slinple. We
can choose an obJect unlformly and at random, and swap I t wlth the last obJect.
If we need another object, we choose one unlformly from among the flrst n-1
obJects, and swap wlth the 72-1st obJect, and so forth. Thls algorlthm takes tlme
proportlonal to k , and 0 (1) extra space 1s needed. The dlsadvantage 1s that the
sample 1s not ordered. Also, record swapplng 1s sometlmes not allowed. We are
allowed to swap polnters though, but thls would then requlre @ (n) extra space
for polnters. If there are no records to begln wlth, then the space requlrement 1s
O (n). Formally we have:

Swapping method

FOR i :=n DOWNTO n -k +l DO

Generate a uniform (0,1] random variate U

Swap (A [XJA [ill
x+- riui

RETURN A [n-k +1], . . . , A [n J

The swapplng method 1s very convenlent. If we set k=n , then the returned
array 1s a random permutatlon. Thus, the swapping method Is based upon the
prlnclple that generatlng a random subset of slze k 1s equivalent to generatlng
the first k entrles In a random permutatlon.

XII.2.CLASSICAL SAMPLING 613

2.2. Classical sampling with membership checking.
If we are not allowed to swap lnformatlon, then we are forced to check

whether a certaln element 1s not already plcked. The checklng can be achleved In
a number of ways vla dlfferent data structures. Regardless of the data structure,
we can formulate the algorlthm:

Classical sampling with membership checking

s+0 (s will be the set of random integers to be returned)
FOR i :=1 TO k DO

REPEAT
Generate a random integer z in (1, . . . , n }.

UNTDL NOT Member (2) (Member returns true if an integer is already picked, and
false otherwise.)
S+Su{Z}

RETURN s

The data structure used for S should support the followlng operations: lnltlallze
empty set, Insert, member. Among the tens of posslbie data structures, the fol-
lowlng are perhaps most representatlve:
A. The blt-vector lmplementatlon. Deflne an array of n blts, whlch are lnltlally

set t o false, and whlch are swltched to true upon lnsertlon of an element.
B. An unordered array of chosen elements. Elements are added at the end of

the array.
C. A blnary search tree of chosen elements. The expected depth of the k - th ele-

ment added to the tree 1s -2log(k). The worst-case depth can be as large as
k.
A helght-balanced blnary tree or 2-3 tree of chosen elements. The worst-case
depth of the tree wlth k elements 1s 0 (log(k)).
A bucket structure (open hashlng wlth chalnlng). Partltlon (1, . . . , n } lnto
k about equal Intervals, and keep for each lnterval (or: bucket) a llnked llst
of all elements chosen untll now.
Closed hashlng lnto a table of slze a blt larger than k.

D.

E.

F.
I t 1s perhaps useful to glve a llst of expected complexltles of the varlous opera-
tlons needed on these data structures. We also lnclude the space requlrements,
wlth the conventlon that the array of k lntegers to be returned 1s In any case

614 MI.2.CLASSICAL SAMPLING

lncluded In the space requlrements.

Tlmewlse, none of the suggested data structures 1s better than the blt-vector data
structure. The problem wlth the blt-vector lmplementatlon 1s not so much the
extra storage proportlonal t o n , because we can often use the already exlstlng
records and use common programming trlcks (such as changlng slgns etcetera) to
store the extra blts. The problem 1s the re-lnltlallzatlon necessary after a sample
has been generated. At the very least, thls wlll force us to conslder the selected
set S , and turn the k blts off agaln for all elements In S. Of course, at the very
beglnnlng, we need to set all n blts to false.

The flrst lmportant quantlty 1s the expected number of lteratlons In the sam-
pling algorlthm.

The expected number of lteratlons In classlcal sampllng wlth membershlp
checklng 1s

k n
t .' =1 n-i+1 *

For k =n , thls 1s n 5 4 - n log(n). When k 5 [:I, thls number 1s 5 2k.
i = 1

Proof of Thecirem 2.1.
Observe that t o generate the i - th random Integer, we carry out a serles of

. Thls lndependent experlments, each havlng probablllty of success n -i +I

ylelds the glven expected value. The asymptotlc result when k = n 1s trlvlally
true. The general upper bound 1s obtalned by a standard lntegral argument:
bound the sum from above by

n

XII.2.CLASSICAL SAMPLING 615 i

- < 2+2(k-1) = 2k .I

What matters here 1s that the expected tlme lncreases no faster than 0 (k)
when k 1s at most half of the sample. Of course, when k 1s larger than -, one

should really sample the complement set. In partlcular, the expected tlme for the
blt-vector lmplementatlon 1s 0 (k). For the tree methods, we obtaln 0 (k log(k)).
If we work wlth ordered or unordered Ilsts, then the generatlon procedure takes
expected tlme O (k 2) . Flnally, wlth the hash structure we have expected tlme
0 (k) provided that we can show that the expected tlme of an lnsert or a delete
1s 0 (1) (apply Wald's equatlon). Assume that we have a bucket structure wlth
mk equal-shed Intervals, where m 2 1 1s a deslgn lnteger usually equal to 1. The
lnterval number 1s

hashed to lnterval

n
2

er between 1 and mk, and lnteger zE(1, . . . , n } 1s

. Thus, If the hash table has k elements, then every

lnterval has about A elements. The expected number of cornparlsons needed to
m

check the membershlp of a random lnteger in a hash table contalnlng %' elements
1s bounded from above by E (l+nZ) where nZ 1s equal to the number of elements
In the lnterval 2 , and 2 1s a random lnterval Index, chosen wlth probablllty pro-
portlonal to the cardlnallty of the lnterval. The "1" accounts for the comparlson
spent checklng the endmarker In the chaln. Thus, the expected number of com-
parlsons 1s not greater than

i i
mk n

= 1+-+- .

i k 1
m n m

In the worst case (i = k) , thls upper bound 1s l + - + - ~ Z + - . The upper

bound 1s very loose. Nevertheless, we have an upper bound whlch 1s clearly 0 (1).
Also, If we can afford the space, I t pays to take m as large as posslble. One

616 XII.2.CLASSICAL SAMPLING

posslble hashlng algorlthm 1s given below:
I

Classical sampling with membership checking based on a hash table

This algorithm uses three arrays of integers of size k . An array of headers Head
[i], . . . Head [k] is initially set to 0. An array pointers to successor elements
Next[l], . . . , Next[k] is also set to 0. The array A [I], . . . A (k] will be returned.
FOR i:=i TO k DO

Accept - False

REPEAT
Generate a random integer

k (2-1)
Bucket +l+ 1 2 uniformly distributed on (1, . . . , n }.

Top +- Head [Bucket]
IF Top=O

THEN
Head [Bucket 1 +-i
A [k]+-Z
Accept + True

WHILE A [Top]#Z AND Top#o DO
ELSE

(Top, Top*) +- (Next [Top], Top)

F Top=O THEN
A [i]-Z
Next [Top*] +-i
Accept True

UNTIL Accept
RETURN A [I], . . . , A [k]

The hashlng algorlthm requires 2k extra storage space. The array returned 1s not
sorted, but sortlng can be done In llnear expected tlme. We glve a short formal
proof of thls fact. It 1s only necessary to travel from bucket to bucket and sort
the elements wlthln the buckets (because an order-preservlng hash functlon was
used). If thls 1s done by a slmple quadratlc method such as bubble sort or selec-
tion sort, then the overall expected tlme cornplexlty 1s 0 (k) (for the overhead
costs) plus a constant tlmes

1 ==l

But ni 1s hypergeometrlc wlth parameters n ,1 ,k where , I 1s the number of
lntegers In the i- th bucket (thls 1s about -), 1.e. for each j , n

mk

XII.2. CLASSICAL SAMPLING 617

kl 1
n m

We know that E (ni)=-, and thls tends to - as k ,n 4 0 0 , and I t does not
1 k
m n

exceed -+- In any case. Simple computatlons show that

n-k n-1 kl Vur(n i) = ---
n-1 n n

1 i k
m m n

whlch In turn tends to - as k ,n ' 0 0 , wlthout exceedlng -+- for any value

of k ,m ,n . Combining thls, we see that the the expected tlme complexlty Is a
constant tlmes

1
m

- k(1+-) .

It 1s not greater than a constant tlmes

These expresslons show that I t Is lmportant to take m large. One should not fall
lnto the trap of lettlng m lncrease wlth k , n because the set-up tlme Is propor-
tlonal to m k , the number of buckets. The hashlng method wlth chalnlng, as
glven here, was lmpllcltly glven by Muller (1958) and studled by Ernvall and
Nevalalnen (1982). Its space lnefflclency Is probably Its greatest drawback.
Closed hashlng wlth a table of slze k has been suggested by NlJenhuls and Wllf
(1975). Ahrens and Dleter (1985) conslder closed hashlng tables of slze mk where
now m 1s a number, not necessarily Integer, greater than 1. See also Teuhola and
Nevalalnen (1982). It 1s perhaps lnstructlve to glve a brlef descrlptlon of the algo-
rlthm of NlJenhuls and Wllf (1975). An unordered sample A [l], . . . , A [k] wlll
be generated, and an auxlllaiy vector Next[l], . . . , Next[k] of llnlcs Is needed In
the process. A polnter p points to the largest lndex i for whlch A [;I 1s not yet
speclfled.

618 XII. 2. CLASSICAL SAMPLING

Algorithm of Nijenhuis and Wilf

[SET-UP]
p +k +I
FOR i:=1 TO k DO A [;)to
[GENERATOR]
REPEAT

Generate a random integer x uniformly distributed on 1, . . . , n . Set
Bucket+-Xmod k +I.
LF A [Bucket]=O

THEN A [Bucket]+X ,Next [Bucket)tO
ELSE

WHILE A [Bucket]#X DO
IF Next[Bucket]=O

THEN
REPEAT p +p -1 UNTIL p =O OR A [p]=O

Next[Bucket] +p
Buckettp

ELSE Bucketc-Next[Bucket]

UNTIL p =O

RETURN A [I], . . . , A [k]

The algorlthm of NlJenhuls and Wllf dlffers sllghtly from standard closed hashlng
schemes because of the vector of llnks. The llnks actually create small llnked llsts
wlthln the table of s h e k. When we look at the cost assoclated with the algo-
rlthm, we note A r s t that the expected number of unlform random varlates needed
Is at the same as for all other classical sampllng schemes (see Theorem 2.1). The
search for an empty space (p +-p -1) takes tlme 0 (k). The search for the end of
the llnked llst (Inner WHILE loop) takes on the average fewer than 2.5 llnk
accesses per random varlate x, lndependent of when X 1s generated and how
large k and n are (Knuth, 1969, pp. 513-518). Thus, both expected tlme and
space are 0 (k).

XII.2. CLAS SICAL SAMPLING 619

2.3. Exercises.
1. The number of elements n , that end up In a bucket of capaclty 1 In the

bucket method)s hypergeometrlcally dlstrlbuted wlth parameters n , k ,Z .
That Is,

In the text, we needed the expected value and varlance of n l . Derlve these
quantltles.

2. Prove that the expected tlme in the algorithm of NlJenhuls and Wllf Is

3. Weighted sampling without replacement. Assume tha t we wlsh to gen-
erate a random sample of slze k from (1, . . . , n } , where the lntegers
1, . . . , n have weights wi. Drawing an Integer from a set of Integers Is to
be done wlth probabllity proportional to the weight of the Integer. Uslng
classical sampling, this Involves dynamlcally updatlng a selectlon probablllty
vector. Wong and Easton (1980) suggest setting up a binary tree of helght
0 (log(n)) in tlme 0 (n) In a preprocesslng step, and using thls tree In the
lnverslon method. Generating a random integer takes tlme 0 (log(n)), whlle
updatlng the tree has a similar cost. Thls leads to a method wlth worst-case
tlme O(klog(n)+n) . The space requirement 1s proportional to n (space 1s
less crltlcal because the vector of weights must be stored anyway). Develop
a dynamlc structure based upon the alias method or the method of guide
tables, whlch has a better expected tlme performance for all vectors of
w elghts.

0 (k 1.

3. SEQUENTIAL SAMPLING.

3.1. Standard sequential sampling.
In sequentlal sampllng, we want an ordered sample of slze k drawn from

1, . . . , n . An unordered sample can always be obtained by one of the methods
descrlbed In the previous section, and In many cases (e.g. the hashlng methods),
sortlng can be done extremely efflclently In expected tlme 0 (k). What we wlll do
In thls chapter 1s different. The methods descrlbed here are fundamentally one
Pass methods In which the random sample Is constructed In order. There are two
Possible strategles: flrst, we could grab each integer In 1, . . . , n In turn, atid
declde whether to take It or leave I t . It turns out, a s we wlll see below, that for
each declslon, we need only compare a new uniform random varlate wlth a cer-
t a h threshold. Unfortunately, this standard sequentlal sampling algorithm takes

620 XII.3 SEQUENTIAL SAMPLING

tlme proportlonal to n : I t becomes partlcularly lnemclent when k 1s much
smaller than n . The second strategy clrcumvents thls problem by generatlng the
spaclngs between successlve lntegers. Assume for a moment that each spaclng can
be generated In expected tlme 0 (1) unlformly over all parameter values. Then
the spaclngs method takes expected tlme 0 (k). The problem here 1s that the dls-
trlbutlon of the spaclngs 1s rather cornpllcated; I t also depends upon the partlally
generated sample.

In the standard sequentlal sampling algorlthm of Jones (1962) and Fan,
Muller and Rezucha (1962), the probablllty of selectlon of an lnteger depends
upon only two quantltles: the number of lntegers remalnlng to be selected, and
the number of lntegers not yet processed. Inltlally, these quantltles are k and n .
To keep the notatlon slniple, we wlll let k decrease durlng executlon of the algo-
rlthm.

Standard sequential sampling

FOR i :=1 TO n DO
Generate a uniform [0,1] random variate U .

IF us- THEN select i , k t k - 1
n- i+1

k
n Integer 1 1s selected wlth probablllty - as can easlly be seen from the followlng

argument: there are

ways of chooslng a subset of slze k from 1, . . . , n . Furthermore, of these,

lnclude lnteger 1. The probablllty of lncluslon of 1 should therefore be the ratlo
of these two numbers, or k / n . Note that thls argument uses only k , the number
of remalnlng lntegers to be selected, and n , the number of lntegers not yet pro-
cessed. It can be used lnductlvely to prove that the algorlthm 1s correct. Note for
example that If at any tlme In the algorlthm k =n , then each of the remalnlng n
lntegers In the Ale 1s selected wlth probablllty one. If at some point k=O, no
more lntegers are selected. The tlme taken by the algorlthm 1s proportlonal to n ,
but no extra space 1s needed. For small values of n , the standard sequentlal algo-
rithm has llttle competltlon.

XII.3.SEQUENTIAL SAMPLING 621

3.2. The spacings method for sequential sampling.
We say that a random varlable X has the dlstributlon D (k ,n) when X Is

distributed as the mlnlmal lnteger In a random subset of size k drawn from
(1, . . . , n } . The spaclngs method for sequentlal sampllng is deflned as follows:

The spacings method for sequential sampling

Y-0 (Y is a running pointer)
REPEAT

Generate a random integer X with distribution D (k ,n).
k +lc -1, n +n -X (update parameters).
Select Y+X, set Y-Y+X

UNTIL k = O

In the algorlthm, the orlglnal values of k and n are destroyed - thls saves us the
trouble of havlng to introduce two new symbols. If we can generate D (k ,n) ran-
dom varlates In expected tlme 0 (1) unlformly over k and n , then the spaclngs
method takes expected tlme 0 (k). The space requirements depend of course on
what 1s needed for the generatlon of D (k ,n). There are many possible algorlthms
for generatlng a D (k ,n) random varlable. We dlscuss the following approaches:
1.

2.

3.

The three methodologles wlll be dlscussed In dlfferent subsectlons. All technlques
require a conslderable programming effort when Implemented. In cases 1 and 3,
most of the energy 1s spent on numerlcal problems such as the evaluation of
ratios of factorlals. Case 2 avoids the numerical problems at the expense of some
addltlonal storage (not exceeding 0 (k)). We wlll flrst state some propertles of
D (k ,n 1.

The Inverslon method (Devroye and Yuen, 1981; Vltter, 1984).

The ghost sample method (Devroye and Yuen, 1981).

The rejection method (Vltter, 1983, 1984).

622 MI.3 .SEQUENTIAL SAMPLING
~ ~ ~~~

Theorem 3.1.
Let x have dlstrlbutlon D (k ,n). Then

P (X > i) = ,O<i<n-k ,

n-i\

Proof of Theorem 3.1.

sets of k out of n -;, and the number of subsets of k -1 out of n -i .
Argue by countlng the number of subsets of k out of n , the number of sub-

Theorem 3.2.
The random varlable X=mln(x , , . . . , xk) 1s D (k ,n) dlstrlbuted when-

ever XI, . . . , xk are lndependent random varlables and each xi 1s unlformly
dlstrlbuted on (1 , . . . , n -k + i }.

~~ ~

Proof of Theorem 3.2.
For O<i<n-k,

P (Y > i) =

whlch was to be shown.

From Theorem 3.2, we deduce wlthout further work:

I-

Theorem 3.3.
Let X be D (k ,n) dlstrlbuted, and let Y be the mlnlmum of k lld unlform

(1, . . . , n-k+1} random varlables. Then X 1s stochastlcally greater than Y ,
that Is,

P (X > i) 2 P (Y > i) ,all i .

Furthermore, related to the closeness of X and Y 1s the followlng collectlon
of lnequalltles.

Theorem 3.4.
Let x and Y be as In Theorem 3.3. Then

In partlcular,

0 5 E (X) - E (Y) 5 1 .

Proof of Theofem 3.4.

that
In the proof, we let u,, . . . , uk be Ild unlform (0,1] random varlables. Note

Also,

n -k +I E (Y) 2 (n-k+l)E(mln(U, , . . . , uk)) =
k + i

Clearly,

..
k E (X) - E (Y) 5 -

k +I

624 XII.3.SEQUENTLAL SAMPLING

3.3. The inversion method for sequential sampling.
The dlstrlbutlon functlon F for a D (k ,n) random varlable X 1s

Thus, If U 1s a uniform [0,1] random varlable, the unlque lnteger X wlth the
property that

F(X-1) < u 5 F (X)

has dlstrlbutlon functlon F , and 1s thus D (k ,n) dlstrlbuted. The solutlon can be
obtained sequentlally by coinputlng F(l), F (2) , ... untll for the flrst tlme U Is
exceeded. The expected number of lteratlons 1s E (X) = - . The expected

tlme complexlty depends upon how F 1s computed. If F (i) 1s computed from
scratch (Fan, Muller and Rezucha, 1962), then tlme proportlonal to k + 1 1s
needed, and x 1s generated in expected tlme proportlonal to n. Thls 1s unac-
ceptable as I t would lead to an 0 (n k) sampllng algorlthm. Lucklly, we can com-
pute F recursively by notlng that

k +I

Uslng thls, plus the fact that l - F (O) = l , we see that X can be generated In
expected tlme proportlonal to - , and that a random sample can thus be gen-
erated In expected tlme proportlonal to n . Thls 1s stlll rather lneftlclent, More-
over, the recurslve computatlon of F leads to unacceptable round-off errors for
even moderate values of k and n . If F 1s recomputed from scratch, one must be
careful In the handllng of ratlos of factorlals so as not t o lntroduce large cancela-
tion errors in the computatlons. Thus, help can only come If we take care of the
two key stumbllng blocks:
1.
2. The reductlon of the number of lteratlons In the solutlon of

These lssues are dealt wlth In the next sectlon, where an algorlthm of Devroye
and Yuen (1981) 1s glven.

k +i

The efflclent computatlon of F .

F (X-1)< U L F (X) .

s I . 3 .SEQUENTIAL SAMPLING 625

3.4. Inversion-with-correction.
A reductlon In the number of lteratlons for solving the lnverslon lnequalltles

is only posslble If we can guess the solutlon pretty accurately. Thls 1s posslble
thanks to the closeness of x to Y as deflned In Theorems 3.3 and 3.4. The ran-
dom varlable Y lntroduced there has dlstrlbutlon functlon G where

, 0 5 i S n - I C . n -IC +I-i I n-k+1
G (i) = P (Y si) = I-

Recall that F S G and that O<E (X-Y)<_ l . By inverslon of G , Y can be gen-
erated qulte slmply as

where U 1s the same unlform [0,1] random varlate that wlll be used In the lnver-
slon lnequalltles for x. Because x 1s at least equal t o Y , i t sufIlces to start look-
lng for a solutlon by trylng Y ,Y +1, Y +2,.... Thls, of course, 1s the prlnclple of
lnverslon-wlth-correctlon explalned In more detall In section 111.2.5. The algo-
rlthm can be summarlzed as follows:

Inversion-with-correction (Devroye and Yuen, 1981)

LF n=k
THEN RETURN x +-I

ELSE
Generate a uniform [0,1] random variate u .
X- I (l-(l-U)')(n -k +1)+1

1

T -l-F(X)
WHILE 1-U 5 T DO

n -k -X
f l -X T-T

x-x+l
RETURN x

The polnt here 1s $bat the expected number of lteratlons In the WHILE loop 1s
E (X - Y) , whlch 1s less than or equal t o 1. Therefore, the expected tlme taken by
the algorlthm 1s a constant plus the expected tlme needed to compute F at one
polnt. In the worst posslble scenarlo, F 1s computed as a ratlo of products of
Integers slnce

626 XII.3.SEQUENTIAL SAMPLING

Thls takes tlme proportlonal to k . The random sampllng algorlthm would there-
fore take expected tlme proportlonal to k 2 . Interestlngly, If F can be computed
In tlme 0 (l) , then X can be generated In expected tlme 0 (l) , and the random
sampllng algorlthm takes expected tlme 0 (I C). Furthermore, the algorlthm
requlres bounded workspace.

If we accept the logarlthm of the gamma functlon as a functlon that can be
computed In constant tlme, then F can be computed In tlme 0 (1) vla:

iog(1-F (i 1) = iog(r(n -i +i))+iog(r(n -IC +I))

-iog(r(n -i -k +q)+iog(r(n +I)) .

Of course, here too we are faced wlth some cancelatlon error. In practlce, If one
wants a certaln Axed number of slgnlficant dlglts, there 1s no problem computlng
log(l?) In constant tlme. From Lemma X.1.3, one can easlly check that for n 2 8 ,
the series truncated at k = 3 glves 7 slgnlflcant dlglts. For n <8 , the logarlthm of
n can be computed dlrectly. There are other ways for obtalnlng a certaln accu-
racy. See for example Hart et al. (1968) for the computatlon of log(F) as a ratlo
of two polynomlals. See also sectlon X.1.3 on the computatlon of factorials In
general.

A Anal polnt about cancelatlon errors In the computatlon of l-(l-U)l/k
when k 1s large. When E 1s an exponentlal random varlable, the followlng two
random varlables are both dlstrlbuted as 1-(1- u)'Ik :

E
k

--
1-e

E
2k

tanh(-)

l+tanh(-)
2k
E '

The second random varlable 1s to be preferred because I t 1s less susceptlble to
cancelatlon error.

3.5. The ghost point method.

exploltlng speclal propertles such as Theorem 3.2. Recall that X Is dlstrlbuted as
Random varlables wlth dlstrlbutlon D (k ,n) can also be generated by

I+ mln((n-k+1)Ul , (n-k+2)U2, . . . , (n - k + k) U k) J I
where u,, . . . , uk are lndependent unlform [0,1] random varlables. Direct use of
thls property leads of course to an algorlthm talclng tlme O (k) . Therefore, the
random sampllng algorlthm correspondlng t o I t would tz$e tlme proportlonal to
k '. What dlstlngulshes the algorlthm from the lnverslon algorlthms 1s that no
heavy computatlons are Involved. In the ghost polnt (or ghost sample) method,
developed In Devroye and Yuen (1981), the fact that X 1s almost dlstrlbuted as

627 XII.3 .SEQUENTIAL SAMPLING

the minlmum of k Ild random varlables Is exploited. The expected tlme per ran-
dom varlate 1s bounded from above uniformly over all k: <pn for some constant
pE(0,l). Unfortunately, extra storage proportlonal to k Is needed.

We colned the term "ghost polnt" because of the following embeddlng argu-
ment, In whlch X 1s written as the mlnlmum of k lndependent random varlables,
whlch are llnked to k lid random varlables provlded that we treat some of the lid
random varlables as non-existent. The lld random varlables are xi, . . . , x k ,
each unlformly dlstrlbuted on (1 , . . . , n-k +l}. If we were to deflne X as the
mlnlmum of the Xi 's, we would obtaln an Incorrect result. We can correct how-
ever by treating some of the Xi's as ghost polnts: deflne lndependent Bernoulll

random varlables Z,, . . . , zk where P (2; =I)=
i -1

n -k + i . The & 's for whlch

Z j = l are to be deleted. Thus, we can deflne an updated collection of random
varlables, Xi, . . . , xk', where

xi if zi =o
n -k +I If Zi =I

xi, =

Theorem 3.5.
For the constructlon glven above,

X = min(Xi, . . . , x k ')

1s D (k ,n) dlstrlbuted.

Proof of Theorem 3.5.
Flx 05 t' 5 n -k . Then,

k
P (X > i) = r I P (X j ' > i)

j = I
k

j = i

j= i n (n - k + i n - k + j n - k + i

j= i n - k + j

rl[(P (Zi =1)+P (Zi =o)P (Xi > k))

1 j - 1 n - k + i n -k+l - i +
n - k + j - i

628 XII.3 .SEQUENTIAL SAMPLING

Every Xi has an equal probablllty of belng the smallest. Thus, we can keep
generatlng unlformly random lntegers from 1, . . . , I C , wlthout replacement of
course, untll we And one for whlch z i = O , Le. untll we And an lndex for whlch
the Xi Is not a ghost polnt. Assume that we have slrlpped over m ghost polnts In
the process. Then the xi In question 1s dlstrlbuted as the m +1-st smallest of the
orlglnal sequence X,, . . . , Xk. The polnt 1s that such a random varlable can be
generated In expected tlme o(1) because beta random varlates can be generated
In O(1) expected tlme. Before proceeding wlth the expected tlme analysls, we
glve the algorlthm:

The ghost point method

[SET-UP J
A n auxiliary linked list L is needed, which is initially empty. The maximum list size is k .
The stack size is Size.
Size t o .
[GENERATION]
REPEAT

REPEAT
Generate an integer W uniformly distributed on (1, . . . , k}.

UNTIL W is not in L
Add w to L , Size + Size +1.

Generate a uniform [0,1] random variate u .
w-1

UNTIL ' 3 n - k + W

Generate a beta (Size,k-Size+l) random variable B (note that
"Size" smallest of k iid uniform [0,1] random variables.)
RETURN xt L1+B (n -k +l)J

is distributed as the

We refer to the sectlon on beta random varlate generatlon for unlformly fa s t
generators. If a beta varlate generator Is not locally avallable, one can always

where G ,G' are lndependent gamma (W) and gamma G generate B as
G +GI

(I C - W +1) random varlables respectlvely.
For the analysls, we assume that k s p n where pE(0,i) Is a constant. Let N

denote the number of W random varlates generated In the lnner REPEAT loop.
It wlll approprlately measure the complexlty of the algorlthm provlded that we
can check membershlp In llst L In constant tlme.

XII.3 .SEQUENTIAL SAMPLING 629

Theorem 3.6.
For the ghost polnt algorlthm, we have

i + p E (N) 5 c-
(1-PI2

where c > O 1s a unlversal constant and k Lpn where pE(0 , l) . Furthermore, the
expected length of the list L , 1.e. the expected value of Slze, does not exceed

I 1

Proof of Theorem 3.6.
If T 1s the eventual value of Slze, then

Therefore, for constant a E(O,l),

(by a change of s)

whlch 1s approxlmately mlnlmal when

6
n + h '

a=---

The upper bound Is thus not greater than a constant tlmes E (T 2) . But T 1s s t b
chastlcally smaller than a geometrlc random varlable with probablllty of success -' +' 2 1-p. Thus, E (??) 5 1/(1-p) and

n

P .a 1 E (T 2) 5 (-)2+- = -
1-P (1-p)2 (1-d2

630 XII.3 .SEQUENTIAL SAMPLING

The value of the constant c can be deduced from the proof. However, no
attempt was made to obtaln the best posslble constant there. The assumption

that membershlp checklng in L can be done In constant tlme requlres that a bit
vector of k flags be used, lndlcatlng for each lnteger whether I t 1s included 111 L
or not. Settlng up the bit vector takes tlme proportional to I C . However, thls cost
1s to be born Just once, for after one varlate x 1s generated, the flags can be reset
by emptylng the llst L . The expected tlme taken by the reset operatlon is thus
equal to a constant plus the expected length of the llst, whlch, as we have shown
In Theorem 0, 1s bounded by l / (l - p) . For the global random sampllng algorlthm,
the total expected cost of settlng and resetting the blt vector does not exceed a
constant tlmes k .

Fortunately, we can avold the blt vector of flags altogether. Membershlp
checklng In llst L can always be done In tlme not exceedlng the length of the Ilst.
Even wlth thls grotesquely lnemclent lmplementatlon, one can show (see exer-
clses) that the expected tlme for generatlng x 1s bounded unlformly over all
k s p n .

The lssue of membershlp checklng can be sldestepped If we generate lntegers
wlthout replacement by the swapplng method. Thls would requlre an addltlonal
vector lnltlally set to 1 , . . . , I C . After X 1s generated, thls vector 1s slightly per-
muted - Its flrst "Size" members for example constltute our llst L . Thls does not
matter, as long as we keep track of where lnteger k Is. To get ready for generat-
lng a D (k - 1 , n) random varlate, we need only swap k wlth the last element of
the vector, so that the flrst k - 1 components form a permutatlon of 1, . . . , k - 1 .
Thus, flxlng the vector between random varlates takes a constant tlme. Note also
that to generate X , the expected tlme 1s now bounded by a constant tlmes the
expected length of the llst, whlch we know 1s not greater than l / (l - p) . Thls 1s
due to the fact that the lnner loop of the algorlthm 1s now replaced by one loop-
less sectlon of code.

When k > p n , one should use another algorlthm, such as the followlng plece
taken from the standard sequentlal sampllng algorlthm:

x+-0
REPEAT

Generate a uniform random variate u ,
X+-X+l

k
n -X+1 UNTIL u<

RETURN X

The expected number of unlform [0 ,1] random varlates needed by thls algorlthm
1s E (x)=- < - < -. The comblnatlon of the two algorlthms dependlllg n + 1 n 1

k + l - k - p

XII.3.SEQUENTIAL SAMPLING 631

upon the relatlve shes of k and n ylelds an O(1) expected tlme algorlthm for
generatlng x. The optlmal value of the threshold p wlll vary from lmplementa-
tlon to lmplementatlon. Note that If a membershlp swap vector 1s used, I t 1s best
to reset the vector after each X 1s generated by traverslng the llst In LIFO order.

3.6. The rejection method.
The generatlon of D (k ,n) random varlates by the reJectlon method creates

speclal problems, because the probabllltles p i contaln ratlos of factorlals. When-
ever we evaluate p i , we can use one of two approaches: p i 1s evaluated In con-
stant tlme (thls, in fact, assumes that the logarlthm of the I' functlon 1s available
In constant tlme, and that we do give up our lnflnlte accuracy because a Stlrllng
serles approxlmatlon 1s used), and pi 1s computed In tlme proportlonal to k+1
(1.e. the factorlals are evaluated expllcltly). Wlth the latter model, called the
expllclt factorlal model, I t does not sufflce to And a domlnatlng probablllty vector
qi whlch satlsfles

for some constant c lndependent of k ,n . We could lndeed stlll end up wlth an
expected tlme complexlty that is not unlformly bounded over k ,n . Thus, In the
expllclt factorlal model, we have to And good domlnatlng and squeeze curves

1
whlch wlll allow us to effectlvely avold computing p i except perhaps about 0 (-)

percent of the tlme. Because D (k ,n) 1s a two-parameter famlly, the deslgn 1s
qulte a challenge. We wlll not be concerned wlth all the details here, Just wlth
the flavor of the problem. The detalled development can be found In Vltter
(1984). Nearly all of thls sectlon 1s an adaptatlon of Vltter's results. Gehrke
(1984) and Kawarasakl and Slbuya (1982) have also developed reJectlon algo-
rithms, slmllar to the ones dlscussed In thls sectlon.

At the very heart of the deslgn 1s once agaln a collectlon of lnequalltles.
Recall that for a D (k ,n) random varlable X ,

k

032 xII.3 .SEQUENTIAL SAMPLING

where

Also,

where

n c 1 =
n - k + i '

Note that g 1s a density in 3 , and that g Is a probablllty vector In i .

Proof of Theorem 3.7.
Note that

k -I
n --2 k <

- n - k + 1 [41

Furthermore,

n n - k + 1 h , (i) = - (1-

k k'-2 n 4 - i +2+ j
Tj!., n - k + l + j

XII.3.SEQUENTIAL SAMPLING 633

= p j .

Thls concludes the first half of the proof. For the second half, we argue slmllarly.
Indeed, for i 21,

,

= c 2 g , (i) *

Furthermore,

Random varlate generators based upon both groups of lnequalltles are now
easy to And, because g 1 1s baslcally a transformed beta denslty, and g 2 1s a
geometrlc probablllty vector. In the case of gl, we need to use rejection from a
contlnuous density of course. The expected number of lteratlons In case 1 1s
c l=n / (n -k +1) (whlch 1s unlformly bounded over all k ,n with k s p n , where

pE(0,l) 1s a constant). In case 2, we have c 2 = - - , and thls 1s unlformly
bounded over all k 2 2 and all n 2 1.

k n-1
k-1 n

634

f l -k +I Accept -[V 5
f l

XII.3.SEQUENTIAL SAMPLING

1-
12 -k + I

Y -1 1--

First rejection algorithm

UNTIL Accept
RETURN x

Second rejection algorithm

k -1

1

REPEAT
Generate an exponential random variate E and a uniform [O , l] random variate V .
X - - E / l o g (l - -) (X has probability vector g2)

n -1 k - l 1
THEN

I
I F X 5 f l - k + 1

x-1 k - 1 \

I
1--

n -1

Accept +-[V<

IF NOT Accept THEN

I Px Accept -[v 5
c 29 2 w 1

UNTIL Accept
RETURN x

XII.3 .SEQUENTIAL SAMPLING

3.7. Exercises.

635

1.

2.

3.

4.

5 .

Assume that In the standard sequentlal sampling algorlthm, each element is
chosen wlth equal probablllty -. k The sample slze 1s a blnomlal (n ,-) k ran-

dom varlable N . Show tha t as k +m,n +m,n -k -+m, we have
n n

n
P (N = k) - d 2 7 r k (n - k)

Assume that k <pn for some Axed p E (0 , l) . Show that If the ghost polnt
algorlthm 1s used to generate a random sample of slze k out of n , the
expected tlme 1s bounded by a functlon of p only. Assume that a vector of
membershlp flags 1s used In the algorlthm, but do not swltch to the standard
sequentlal method when durlng the generation process, the current value of
k temporarlly exceeds p tlmes the current value of n (as 1s suggested In the
text).
Assume that In the ghost polnt algorlthm, membershlp checklng 1s done by
traverslng the llst L . Show that to generate a random varlate X wlth dlstrl-
butlon D (k ,n), the algorlthrn takes expected tlme bounded by a functlon of
k: - only.
n

If X Is D (k ,n) dlstrlbuted, then
(n + l) (n - k) k
(k + 2) (k + I) ~

vur (X) =

Conslder the expllclt factorlal model In the reJectlon algorlthm. Notlng that
the value of px can be computed ln tlme mln(k ,X+l) , And good upper
bounds for the expected tlme complexlty of the two reJectlon algorlthms
glven In the text. In partlcular, prove that for the flrst algorlthm, the
expected tlme complexlty 1s unlformly bounded over k s p n where p € (O , l) 1s
a constant (Vltter, 1984).

4. OVERSAMPLING.

4.1. Definition.
If we are glven a random sequence of k unlform order statlstlcs, and

transform I t vla truncatlon lnto a random sequence of ordered Integers In
(1 , . . . , n }, then we are almost done. Unfortunately, some Integers could appear
more than once, and I t 1s necessary to generate a few more observatlons. If we
had started wlth k ,>IC unlform order statlstlcs, then wlth some luck we could
have ended up wlth at least IC dlfferent Integers. The probablllty of thls lncreases
Wld ly wlth k , . On the other hand, we do not want to take k, too large, because
then we wlll be left wlth qulte a blt of work trylng to ellmlnate some values to
obtain a sample of preclsely slze I C . Thls method 1s called oversampllng. The

636 XI1.4. OVERSAMPLING

main issue at stake is the cholce of k , as a function of k and n so that not only
the total expected tlme Is 0 (k) , but the total expected time 1s approximately
minlmal. One additional feature that makes oversampling attractlve 1s that we
wlll obtaln an ordered random sample. Because the method is baslcally a two
step method (uniform sample generator, followed by excess ellmlnator), I t 1s not
included in the’ section on sequential methods.

The oversampling algorithm

REPEAT
Generate U(,)< . .

Determine xi+- l + n U (i)
the ordered array X(,), . . . , X (X ,) .

< U,, the order statistics of a uniform sample of size k , on

for all i , and construct, after elimination of duplicates,

[0,11.

I I
UNTIL K,?k
Mark a random sample of size K,-k of the sequence x(,), . . . , X (K ~) by the standard
sequential sampling algorithm.
RETURN the sequence of k unmarked xi ‘s.

The amount of extra storage needed 1s K , - k . Note that thls 1s always bounded
by Ic l - k . For the expected time analysls of the algorithm, we observe that the
unlform sample generation takes expected time c , k,, and that the elimlnation
step takes expected time c, IC,. Here c, and c, are posltlve constants. If the
standard sequential sampllng algorithm is replaced by classlcal sampling for elim-
lnatlon (l.e., to mark one Integer, generate random integers on (1, . . . , IC1}
until a nonmarked integer 1s found), then the expected time taken by the ellml-
natlon algorlthm Is

K1-k IC,
I .E =1 K,-i+i

What we should also count in the expected tlme complexity is the probability of
acceptlng a sequence. The results are comblned in the following theorem:

XII.4.0VERSAMPLING 637

Theorem 4.1.
Let c , , C e be as deflned above. Assume that n > k and that

for some constant a >O. Then the expected tlme spent on the unlform sample 1s

E", k l

where E (N) 1s the expected number of lteratlons. We have the followlng lnequal-
lty:

The expected tlme spent marklng does not exceed ce k , , whlch, when
a =O (k) , - -+O, 1s asymptotlc to c , k . If classlcal sampllng 1s used for marklng,

then I t is not greater than

k
n

k + a

Proof of Theorem 4.1.
The expresslon for the expected tlme spent generating order statlstlcs 1s

based upon Wald's equatlon. Furthermore, E (N)=l/P (K , 2 k). But

The only other statement In the theorem requlrlng some explanation 1s the state-
ment about the marlclng scheme wlth classical sampllng. The expected tlme spent
dolng so does not exceed c , times

I I G L k) E ((IC ,-k)-
K l

k +I

638 XII.4. OVERSAMPLING

Once agaln, we see that unlformly over k s p n , the expected tlme 1s
bounded by a constant tlmes k , for all Axed pE(0,l) and for all cholces of a that
are elther Axed or vary wlth k In such a manner that a =O (k). We recommend
that a be taken large but Axed, say a=10. Note that In the speclal case that
n -+m, a =O (k), k , - IC. Thus, the expected tlme of the marklng sectlon based
k

upon classlcal sampllng 1s o (k), 1.e. I t 1s asymptotlcally negllglble. Also, If a -00,

E (N)-+i for all cholces of n ,k . In those cases, the maln contrlbutlons to the
expected tlme complexlty come from the generatlon of the k, unlform order
statlstlcs, and the ellmlnatlon of the marked values (not the marklng Itself).

4.2. Exercises.
1. Show that for the cholce of k glven In Theorem 4.1, we have E (N)+l as

n ,k -00 , -+pE(O,l). Do thls by provlng the exlstence of a unlversal con-

stant A dependlng upon p only such that E (N)<l+-.

k
n

A
&-

5. RESERVOIR SAMPLING

5.1. Definition.
There is one partlcular sequentlal sampllng problem deservlng speclal atten-

tlon, namely the problem of sampllng records from large (presumably external)
Ales wlth an unknown total populatlon. Whlle k 1s known, n 1s not. Knuth
(1969) glves a partlcularly elegant solutlon for drawlng such a random sample
called the reservoir method. See also Vltter (1985). Imagine that we assoclate
wlth each of the records an Independent unlform [0,1] random varlable V i . If the
obJect 1s slmply to draw a random set of slze k , I t sumces to plck those k records
that correspond to the k largest values of the Ui’s. Thls can be done sequen-
tially:

XII.5.RESERVOIR SAMPLING 638

Reservoir sampling

[NOTE: S is a set of pairs (i , V;.).I
FOR i:=1 TO k DO

Generate a uniform [OJ] random variate Vi, and add (c' ,Vi) to S. Keep track of the
pair (rn ,Urn) with the smallest value for the uniform random variate.

i +k +1 (i is a record counter)
WHILE NOT end of flle DO

Generate a uniform [0,1] random variate V;:.
IF &>Urn

THEN
Delete (rn ,urn) from s .
Insert (i , U i) in S.
Find a new smallest pair (rn , Urn).

i t i +I
RETURN all integers i for which (t' , &.)E,!?.

The general algorlthm of reservoir sampllng glven above returns integers
(lndlces); I t 1s trlvlal to modlfy the algorlthm so that actual records are returned.
It 1s clear that n unlform random varlates are needed. In addltlon, there 1s a cost
for updatlng 5. The expected number of deletlons In 5' (whlch 1s equal to the
number of lnsertlons mlnus k) Is

n

i = k + 1
f' ((i t Vi) 1s lnserted In S)

as k+m. Here we used the fact that the flrst n terms of the harmonlc serles are
log(n)+?+o (l / n) where 7 1s Euler's constant. There are several posslble lmple-
mentatlons for the set S . Because we are malnly lnterested In ordlnary lnsertlons
and deletlons of the mlnlmum, the obvlous cholce should be a heap. Both the
expected and worst-case tlmes for a delete operation In a heap of slze k are pro-
portlonal to log(k) as k+m. The overall expected tlme complexlty for deletlons
IS proportlonal to

as k + m . Thls may or may not be larger than the 6 (n) contrlbutlon from the
unlform random varlate generator. Wlth ordered or unordered llnked llsts, the

640 XII.5.RESERVOIR SAMPLING

tlme complexlty 1s worse. In the exerclse sectlon, a hash structure exploltlng the
fact that the lnserted elements are unlformly dlstrlbuted 1s explored.

5.2. The reservoir method with geometric jumps.
In some appilcatlons, such a s when records are stored on a sequentlal access

devlce (e.g., a magnetlc tape), there 1s no way that we can avold traverslng the
entlre flle. When the records are In RA;M or on a random access devlce, I t 1s pos-
slble t o sklp over any number of records In constant tlme: In those cases, i t
should be possible t o get rld of the 8 (n) term In the tlme cornplexlty. Given
(m ,Urn), we know that the waltlng tlme untll the occurrence of a unlform value
greater than Urn 1s geornetrlcally dlstrlbuted wlth success probablllty l-Urn. It
can be generated as [-E/log(um)l where E 1s an exponentlal random varlate.

The corresponding record-breaklng value Is unlformly dlstrlbuted on [Urn ,1].
Thus, the reservolr method wlth geometrlc Jumps can be summarlzed as follows:

Reservoir sampling with geometric jumps

[NOTE: S is a set of pairs (i ,vi).]
FOR i:=l TO k DO

Generate a uniform [0,1] random variate ui, and add (i ,vi) to S . Keep track of the
pair (m ,urn) with the smallest value for the uniform random variate.

i t k (i is a record counter)
WHILE True DO

Generate an exponential random variate E .
i t i + [-E /log(Urn)1.
IF i not outside flle

THEN
Generate a uniform [Urn ,1] random variate U,. .
Delete (m , urn) from S .
Insert (i , U,.) in S .
Find a new smallest pair (m ,Urn).

ELSE RETURN all integers t' for which (i ,Vi)ES .

The analysls of the prevlous sectlon about the expected tlme spent updatlng s
remalns valld here. The difference 1s that the 8(n) has dlsappeared from the plc-
ture, because we only generate unlform random varlates when lnsertlons ln S are
needed.

XII.5.RESERVOIR SAMPLING 641

5.3. Exercises.
1. Deslgn a bucket-based dynamlc data structure for the set S , whlch ylelds a

total expected tlme complexlty for N lnsertlons and deletlons that 1s
o (N log(k)) when N ,k -m. Note that lnserted elements are unlformly dls-
trlbuted on [Urn ,1] where Urn 1s the mlnlmal value present In the set. Inl-
tlally, S contalns k lld unlform [0,1] random varlates. For the heap lmple-
mentatlon of S , the expected tlme complexlty would be O(N log(k)).

