
Chap fer Seven 
UNrVERSAL METHODS 

1. BLACK BOX PHILOSOPHY. 
In the next two chapters we wlll apply the tools of the prevlous chapters In 

the deslgn of algorlthms that are appllcable to large famllles of distrlbutlons. 
Descrlbed In terms of a common property, such as the famlly of all unlmodal den- 
sltles wlth mode at 0, these famllles are generally speaklng nonparametrlc In 
nature. A method that 1s appllcable to such a large famlly Is called a universal 
method. For example, the rejectlon method can be used for all bounded densltles 
on [O,l], and 1s thus a unlversal method. But to actually apply the rejectlon 
method correctly and emclently would requlre knowledge of the supremum of the 
denslty. Thls value cannot be estlmated In a flnlte amount of tlme unless we 
have more lnformatlon about the denslty In questlon, usually In the form of an 
expllclt analytlc deflnltlon. Unlversal methods whlch do not requlre anythlng 
beyond what 1s glven in the deflnltlon of the famlly are called black box methods. 

Conslder for example all dlscrete dlstrlbutlons on the posltlve Integers. 
Assume only that for each i we can evaluate p i  (conslder thls evaluation as 
belng performed by a black box). Then the sequentlal lnverslon method (sectlon 
111.2) can be used to generate a random varlate wlth thls dlstrlbutlon, and can 
thus be called a black box method for thls famlly. The lnverslon method for dls- 
trlbutlons wlth a contlnuous dlstrlbutlon functlon 1s not a black box method 
because flnlte tlme generatlon 1s only posslble in speclal cases (e.g., the dlstrlbu- 
tlon functlon 1s plecewlse h e a r ) .  

The larger the famlly for whlch we deslgn a black box method, the less we 
should expect from the algorlthm tlmewlse: a case In polnt 1s the sequentlal lnver- 
slon method for dlscrete random varlates. The undenlable advantage of havlng a 
few black box methods In one’s computer llbrary Is that one can always fall back 
on these when everythlng else falls. Comparatlve tlmlngs wlth algorlthms spe- 
clally deslgned for partlcular dlstrlbutlons are not falr. 

In chapters IX and X we wlll malnly be concerned wlth fast  algorlthms for 
parametrlc famllles that are widely used by the statlstlcal comrnunlty. In thls 
chapter too, we wlll be concerned wlth speed, but I t  1s by no means the drlvlng 
force. Because contlnuous dlstrlbutlons are more dlfncult to handle In general, we 
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wlll only focus on famllles wlth densltles. In sectlon 2, we present a case study for 
the class of log-concave densltles, to wet the appetlte. Slnce the whole story in 
black box methods 1s told In terms of lnequalltles when the reJectlon method 1s 
Involved, I t  1s lmportant to  show how standard probablllty theoretlcal lnequalltles 
can ald In the deslgn of black box algorlthms. Thls Is done In sectlon 3. In sectlon 
4, the lnverslon-rejectlon prlnclple 1s presented, whlch cornblnes the sequentlal 
lnverslon method for dlscrete random varlates with the reJectlon method. It 1s 
demonstrated there that thls method can be used for the generatlon of random 
varlables wlth a unlmodal or monotone denslty. 

2. LOG-CONCAVE DENSITIES. 

2.1. Definition. 
A density f on R 1s called log-concave when logf 1s concave on Its sup- 

port, In thls sectlon we wlll obtaln unlversal methods for thls class of densltles 
when d=1. The class of densltles 1s very lmportant In statlstlcs. A partlal llst of 
member densltles 1s glven In the table below. 

I Name of densitv I Density I Parameter(s) I 
2 2  - 1 ,-7 

J23; Normal 

Gamma ( a  ) 

(5 >O) a > 1  ax a -1 e -r a Weibull ( a  ) 

e - l *  I a 
Exponential power ( a  ) 

1 
2r(1+ -) 

I ' a '  I 
C Perks ( a  ) a >-2 

e * + e - + + a  
same as above, a =2 
same as above, a =O 

Logistic 
Hyperbolic secant 

Extreme value (k ) I C k  ,-kz-ke-= IC 2 1,integer 
(k - l l !  

-br -k 
Generalized inverse gaussian c x  '-'e a ( X  20) a >1,6 , b *  >o 

Important lndlvldual members of .thls fhfnlly also lnclude the unlform den-' 
slty (as a speclal case of the beta famlly), and the exponentlal denslty (as a spe- 
clal case of the gamma famlly). For studles on the less known members, see for 
example Perks (1932) (for the Perks densltles), Talacko (1956) (for the hyperbollc 
secant denslty), Gumbel (1958) (for the extreme value dlstrlbutlons) and Jorgen- 
sen (1982) (for the generallzed Inverse gausslan densltles). 

The famlly of log-concave densltles on R 1s also lmportant to the mathemat- 
leal statlstlclan because of a few key propertles lnvolvlng closedness under certaln 
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operatlons: for example, the class 1s closed under convolutlons (Ibraglmov (1956), 
Lekkerkerker (1953)). 

The algorlthms of thls sectlon are based upon reJectlon. They are of the 
black box type for all log-concave densltles wlth mode at 0 (note that all log- 
concave densltles are bounded and have a mode, that  Is, a polnt x such that f 
1s nonlncreaslng on [ x , m )  and nondecreaslng on (-m,z]). Thus, the mode must 
be glven to  us beforehand. Because of thls, we wlll malnly concentrate on the 
class LC,,,, the class of all log-concave densltles wlth a mode at 0 and f (0)=1. 
The restrlctlon f (0)=1 1s not cruclal: since f (0) can be computed at run-tlme, 
we can always rescale the axls after havlng computed. f (0) so that the value of 
f (0) after rescallng 1s 1. We deflne LCo as the class of all log-concave densltles 
wlth a mode at 0. 

The bottom llne of thls sectlon 1s that there 1s a reJectlon-based black box 
method for LC,  whlch takes expected tlme unlformly bouilded over thls class If 
the computatlon of f at any polnt and for any f takes one unlt of tlme. The 
algorlthm can be lmplemented In about ten lines of FORTFMN or PASCAL 
code. The fundamental lnequallty needed to achleve thls 1s developed In the next 
sub-sectlon. All of the results In thls sectlon were A r s t  Bubllshed In Devroye 
(1 Q84). 

2.2. Inequalities for log-concave densities. 

Theorem 2.1. 

f (0)=1. Then f ( x ) s g ( x )  where 
Assume that f 1s a log-concave denslty on [O,m) wlth a mode at 0, and that 

1 (052 51) 

the unlque solutlon t < 1 of t =e-x ( l - t )  (5 >1) - 
The lnequallty cannot be lmproved because g 1s the supremum of all densltles In 
the famlly. 

Furthermore, for any log-concave denslty f on (0,m) wlth mode at 0, 
03 

J f  5 e-Zf (O) (z 20) . 
2 
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Proof of Theorem 2.1. 

whlch ylelds the maxlmal value of f (x) when x >1 1s Axed 1s glven by 
We need only conslder the case x >l. The denslty f In the glven class 

for some a >O. Thus, f (u )=e-“ , 0 5 u  < x  . Here a 1s chosen for the sake of 
normallzatlon. We must have 

Replace 1-a by t .  
The second pslrt of the theorem follows by a slmllar, geometrlcal argument. 

Flrst Ax x >O. Then notlce that the tall probablllty beyond x 1s maxlmal for the 
exponentlal denslty, wlilch because of normallzatlon must be of the form 
f (0)eWYf ( O )  , y 20. The tall probablllty 1s e-‘/(’). 

Proof of Theorem 2.2. 
Flx z >l. Conslder the functlons f ,(u)=u and f 2 ( u ) = e - - z ( 1 - U )  for 

0 5 u  51. We have f ,(l)=f 2(1)=1 , f ’2( l )=x  >l=f’l(l), 
f ’ , (O)=xe  -’ < 1=f ,(O). Also, f 1s convex and lncreases from e -‘ at u =O to 
1 at u =l. Thus, there exlsts preclsely one solutlon in (0,l)  for the equatlon 
f l (u )=f l (u ). Thls solutlon can be obtalned by ordlnary functlonal lteratlon: If 
one starts wlth zo(x)=O, and uses z,+,(x)=f 2(zfl  (z)), then the unlque solutlon 
Is approached from below In a monotone manner. If we start wlth yo(” ) at least 
equal to the value of the solutlon, then the functlonal lteratlon 
Yfl+,(z)=/ 2(yfl(z)) can be used to approach the solutlon from above In a 



290 VII.2.LOG-CONCAVE DENSITIES 

monotone way. Slnce f (x)s- 1 for all monotone densltles f on [O,co), we have 

g (x)<-, 1 and thus, we can take y,(x)=-. 1 
X 

- 5  X 

When f 1s a log-concave denslty on [m ,co) wlth mode at m , then 

The area under the boundlng curve 1s exactly 2. The lnequallty applles to all log- 
concave densltles wlth mode at rn (In whlch case the condltlon z >O must be 
dropped and 1-x 1s replaced by 1- I x I ). But unfortunately, the area under the 
domlnatlng curve becomes 4. The two features that make the lnequallty useful 
for us are 
(1) The fact that  the area under the curve does not depend upon f . (Thls 

glves us a unlform guarantee about Its performance.) 
(11) The fact that  the top curve ltself does not depend upon f . (Thls 1s a neces- 

sary condltlon for a true black box method.) 

2.3. A black box algorithm. 
Let us start  wlth the reJectlon algorlthm based upon the lnequallty 

valld for log-concave densltles on [m ,m) wlth mode at m : 
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Rejection algorithm for log-concave densities 

[SET-UF'](can be omitted) 

c4-f  ( m )  
[GENERATOR] 
REPEAT 

Generate U uniformly on [0,2] and V uniformly on [0,1]. 

IF V l l  
THEN ( x , z ) + ( u , V )  
ELSE (X,Z)+(l-log( V-I), V( V-I)) 
X X t m  +- 
C 

UNTJL Z 5- f (X) 
C 

RETURN x 

The valldlty of thls algorlthm 1s qulckly verlfled: Just note that the random vec- 
tor ( X , Z )  generated In the mlddle sectlon of the algorlthm 1s unlformly dlstrl- 
buted under the curve mln(1,e (5 20) . Because of the excellent properties 
of the algorlthm, I t  1s worth polntlng out how we can proceed when f 1s log- 
concave wlth support on both sldes of the mode m .  It sufflces to add a random 
slgn to x Just after ( x , Z )  1s generated. We should note here that we pay rather 
heavlly for the presence of two talls because the reJectlon constant becomes 4. A 
qulck Ax-up 1s not posslble because of the fact that the sum of two log-concave 
functlons 1s not necessarily log-concave. Thus, we cannot "add" the left portlon 
of f to the rlght portlon sultably mlrrored and apply the glven algorlthm to the 
sum. However, when f Is symmetrlc about the mode m ,  I t  1s posslble to keep 

) 

v 

291 

A 

C 
the reJectlon constant at 2 by replaclng the statement X+m+- by 

sx 
2 c  

X t m  +- where S 1s a random slgn. 

Let us conclude thls sectlon of algorlthms wlth an exponentlal verslon of the 
prevlous method whlch should be fast  when exponentlal random varlates can be 
generated cheaply and If the computatlon of log(! ) can be done efflclently (In 
most cases, log(f ) can be computed faster than f ). 
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Rejection method for log-concave densities. Exponential version 

[SET-UPJ(can be omitted) 
c --f (m ), r +loge 
[GENERATOR] 
REPEAT 

Generate U uniformly on [0,2]. Generate an exponential random variate E ,  
IF us1 

THEN ( X  ,Z )+-( U ,-E ) 

ELSE (X,Z)+-(l+E* ,-E-E*) (E* is a new exponential random variate) 
CASE 

-f log-concave on [m ,m): X+m +- X 
C 

-f log-concave on (-m,oo): 

Generate a random sign S . 
CASE 

j symmetric: X+m +- sx 
2c 

not known to  be symmetric: X+m +- sx 
C 

UNTIL s l o g f  (X)-r 
RETURN x 

One of the practlcal stumbllng blocks 1s that often most of the tlme spent In 
the computatlon of f ( X )  1s spent computlng a cornpllcated normallzatlon factor. 
When f 1s glven analytlcally, I t  can be sldestepped by setting up a subprogram 
for the cornputatlon of the ratlo f ($)/I ( m )  slnce thls 1s all that  1s needed In 
the algorlthms. For example, for the generallzed lnverse gausslan dlstrlbutlon, the 
normallzatlon constant has several factors lncludlng the value of the Bessel func- 
tlon of the thlrd klnd. The factors cancel out In f (a: )/f (m ). Note however that 
we cannot entlrely lgnore the lssue slnce f ( rn  ) 1s needed In the computatlon of 
X .  Because m 1s Axed, we call thls a set-up step. 
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2.4. The optimal rejection algorithm. 
In thls sectlon, we assume that f 1s In LC,,,. The optlmal reJectlon algo- 

rlthm uses the best posslble unlform boundlng curve, that  Is, the functlon g of 
Theorem 2.1. The problem Is that g 1s only deflned lmpllcltly. Nevertheless, I t  1s 
posslble to generate random varlates wlth denslty g / J g  wlthout great dlfflculty: 

Theorem 2.3. 
Let E 1,E2, u ,D be lndependent random varlables wlth the followlng dlstrl- 

butlons: E ,,E, are exponentlally dlstrlbuted, U 1s unlformly dlstrlbuted on [0,1] 
and D 1s Integer-valued wlth P (D =n )=6/(n2n2) , n 2 1 .  Then 

1s unlformly dlstrlbuted In {(x ,y ) : x - >O,O<y - -  < g  (x)} where g 1s deflned In 
Theorem 2.1. In partlcular, x has denslty g / J g  and Y Is dlstrlbuted as Vg ( X )  
where v 1s a unlform [0,1] random varlable lndependent of X .  

Proof of Theorem 2.3. 
Fllp the axes around, and observe that the deslred Y should have denslty 

proportlonal to -log(y )/(l-y ) , O s y  51, and that X should be dlstrlbuted as 
u(-log(Y)/(l-Y)) where u 1s lndependent of Y .  By the transformatlon 
y =e-' , Y =e-', we see that Z has denslty proportlonal to 

Le., Is dlstrlbuted as ( E  +E,)/D (slnce E has denslty ze-' , z L O ) .  
Thus, the couple ( U z / ( l - e -  )) ,e B -2 ) has the correct unlform dlstrlbutlon. 

In the proof of Theorem 2.3, we have also shown that 

e 1.6433. 
7r2 

Thls 1s about 18% better than for the algorlthms of the prevlous sectlon. The 
algorlthm based upon Theorem 2.3 1s as follows: 
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Optimal rejection algorithm for log-concave densities 

[NOTE: f ELCq1] 
REPEAT 

Generate a uniform [O, l ]  random variate U .  
Generate iid exponential random variates E ,,E,. Set E -E,+E,. 
Generate a discrete random variate D with P (D = n  )=6/(7?n2) , n 21. 

- 
z +- D 

UZ Y+e-' ,X+- 
1- Y 

UNTIL Y < j  (x) 
RETURN x 

For the generatlon of D , we could use yet another reJectlon method such as: 

REPEAT 
Generate iid uniform [0,1] random variates u , v. 

12 If D 1s generated as suggested, we have a reJectlon constant of -. When used 

In the former algorlthm, thls wlll offset the 18% galn so palnstaklngly obtalned. 
Since the D generator does not vary with f , I t  should preferably be lmple- 
mented based upon a comblnatlon of the allas method and a reJectlon method for 
the tall of the dlstrlbutlon. 

7r2 
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2.5. The mirror principle. 
Conslder now a. normallzed log-concave f wlth two talls, m =0, and 

f (0)=1. In thls case, the orlglnal algorlthms have a reJectlon constant equal to 
4. However, there are two observatlons of Rlchard Brent whlch wlll conslderably 
Improve the performance. The flrst observatlon Is that If p =F (m ) 1s known (F 
Is the dlstrlbutlon functlon), then the rejectlon constant can be reduced to 2 
agaln. Thls Is based upon the followlng lnequallty: 

If f 1s a log-concave denslty wlth mode m =O and f (0)=1, then, wrltlng p 
Theorem 2.4. 

for F (0), we have 

1- IZI 
1- 121 

mln(1,e l -p ) (z LO) I mln(1,e P ) (z <O) 
f ( a : ) <  

The area under the boundlng curve 1s 2. 

Proof of Theorem 2.4. 

Note that - (.) 1s a log-concave denslty on (O,oo), and. that  - f (‘1 1s a 

log-concave denslty on (-o0,O). Slnce f (a: (1-p )) 1s log-concave on (O,oo), we have 
1-P P 

f ( ~ ( 1 - p ) )  5 mln(1,e l-’) (a: 20) . 
The lnequallty and the statement about the area follow wlthout further work. 

The detalls of the rejectlon algorlthm based upon Theorem 2.4 are left as an 
exerclse. Brent’s second observatlon applles to the case that F ( m )  1s not avall- 
able. The expected number of lteratlons In the reJectlon algorlthm can be reduced 
to between 2.64 and 2.75 at the expense of an Increased number of computatlons 
of f . 
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I 

2 ( z 9 )  

l + e  ( P 9 9 - P )  
z 

1-- 

z 2 I-- I---. 
, e  P+e  l - p  (I-p Lz<co) 

Theorem 2.5. 

for z >O, 
Let f be a log-concave denslty on wlth mode at 0 and f (0)=1. Then, 

z z 
1-- 1-- 

f (z )+f (-3) 5 g (z ) = sup (mln(1,e '-P)+mln(i,e P)) 
P E(0,l) 

2 (oszs-) 1 I 2 

Furthermore, 
00 00 

5 1 e-' du < -+-J- du 2.6491 . 5 1  e-" 
J s  =y+:J u 2  2 4 , l + U  

O O+T) 
1 
2 

Deflne another functlon g *  where g*=g except on (-,l), where g*  1s llnear 

wlth values g*(-)=2,g*(1)=1. Then g* > g  and jg*=-. 1 11 
2 4 

To prove the maln statement of Theorem 2.5, we flrst show that g 1s at least 
1 
2 

equal to the rlght-hand-slde of the maln equatlon. For x <-, we have 
1 h 1/2(2)=2. For -5. 5 1 ,  observe that hl-z ( ~ ) = l + e ~ - ' / ( ' - ~ ) .  Flnally, for z 2 1 ,  
2 

we have h,(z )=e . We now show that g 1s at most equal to  the rlght-hand- 
slde of the maln equatlon. To do thls, decompose hp as h p l + h p 2 + h p 3  where 
h, l=hp Ilo,p 1) hp 2=hp I ( ,  , l - p  1, hp 3=hp ,OO). Clearly, hp 1< g for all 
p <_',z 20. Slnce ( p  , l -p)&[O,~] ,  we have h p 2 L g  for all p <',z 20. It sufflces 

2 - 2  
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1 
2 

to show that h p 3 <  e '-' for all 2 z l , p  5-. Thls follows If for all such p , 

1 1 
1 e P + e  l-P < - 
e 

because thls would Imply, for 2 .>i, 

-- -- 
- 

1 '  -- 1 '  -- 
e ( ( e  P )  +(e '-P> ) 

1 1 -- -- 

Puttlng u =- we have 
P 

1 -- 1 1 -- -- 
e ( e  P + e  l - P )  = e-'+e ' . 

The last functlon has equal maxlma at u =O and u too, and a mlnlmum at u =1. 

The maximal value 1s 1 and the mlnlmal value is -. Thls concludes the proof of 

the maln equatlon In the theorem. 

2 
e 

Next, j g  1s 
1 03 

e-' du u -2 
1 -_. 

- + e 2 j e  5 '-' dx = 5 + . 1 1 ( 1 + 2 )  
2 1  - 4 0  

2 

where we used the transformatlon u =-- 2. The .rest follows easlly. For exam- 

ple, a formula for the exponentlal lntegral 1s used at one polnt (Abramowltz and 
Stegun, 1970, p. 231). The last statement of the theorem is a dlrect consequence 

1-x 

1 
2 

of the fact that h p 2  is convex on [-,1]. 

We conclude thls sectlon by mentlonlng the algorlthm derlved from Theorem 
2.5. It requlres on the average 2.75 lteratlons and 5.5 evaluatlons of f per ran- 
dom varlate. It should be used only when the number of unlform random varlates 
Per generated random varlate must be kept reasonable. 

1 

I 
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Rejection method for log-concave densities on the real line 

[NOTE] 
We assume that f has a mode at 0 and that f (0)=1. Otherwise, use a linear transforma- 
tion to  enforce this condition. 
[GENERATOR] 
REPEAT 

Generate iid uniform [OJ] random variates ut v, w . 
4 
11 

IF us- 
W 
2 

THEN (x, y)+( -,2 v )  
7 ELSEIJ? us- 
11 

THEN 
Generate a uniform [0,1] random variate w* . 
(X , Y )+( -;-+zmin( W ,2 W* ), V( 1+2( 1-X))) 1 1  

ELSE (X,Y)+(l-log( W ) , V W )  
UNTIL Y < f  (X)+f (-X) 
Generate a uniform [OJ] random variate z (this can be done by reuse of the unused por- 
tion of U). 

THEN RETURN x 
ELSE RETURN -X 

2.6. Non-universal rejection methods. 
The unlversal rejectlon algorlthm developed In the previous sectlons 1s 

suboptimal for lndlvldual log-concave densltles In the followlng sense: one can 
And domlnatlng curves whlch conslst of a constant functlon around the mode and 
two exponentlal talls and have at the same tlme a smaller lntegral than that of 
the domlnatlng curves for the unlversal method. The lmprovements are lndlvl- 
dual, because for each denslty we requlre addltlonal lnformatlon about the den- 
sity not normally avallable In the black box model. The resultlng algorlthms are 
comparable wlth the ratlo-of-unlforms method, where the exponentlal talk are 
replaced wlth quadratlc talls. Slnce log-concave densltles have sub-exponentlal 
talls, the A t  wlll often be much better than wlth the ratlo-of-unlforms method. 
More Importantly, we can glve a very elegant reclpe for flndlng the optlmal 
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domlnatlng curve whlch 1s valld for all log-concave densltles. 

299 

By log-concavlty, we know that h = log(! ) can be majorlzed by the derlva- 
tlve of h at any polnt (the derlvatlve belng consldered as a llne). This 
corresponds to flttlng an exponentlal curve over f . The problem we have 1s that 
of Andlng polnts m +a >m and m -6 s m  (where m 1s the mode of f ) such 
that the area under 

g (a:) = mln(f ( m )  , ( m  +a ) e ( Z - ( m + a ) ) h ' ( m + a )  , 

1 ( Z  -(m -b ))h'(m -b ) f ( m  -6 ) e  

1s mlnlmal. We wlll formally allow h'(m +a )=--00 and h'(m -6 )=+oo. In those 
cases, the correspondlng terms In the deflnltlon of 9 are elther 00 or 0. Thls dls- 
tlnctlon 1s lmportant for compact support densltles where a or b polnt at the 
extrema1 polnt In the support of f . We can offer the followlng general prlnclple 
for flndlng a and b . 

Theorem 2.6. 
Let f be decomposed as f ,. + f l  where f ,., f 1 refer to  the parts of of f to 

the rlght and left of the mode respectlvely. The lnverses of f ,. and f are well- 
deflned when evaluated at a polnt strlctly between 0 and f ( m ) .  (In case of a 
contlnuous f, , there 1s no problem. If f ,. has a discontlnulty at y , then we 
know that f, (z )>0 for z < y  and f ,. (z)=O for x >y  . In that case, the Inverse, 
If necessary, 1s forced to  be y .) 

The area under g 1s mlnlmal when 

m+iz = f,.-l( f ( m ) )  
e 

m-b = f l - (  l f ( m ) )  
e 

The mlnlmal area 1s glven by 

f (m >(a+b  1 * 

2 e  
e -1 Furthermore, the mlnlmal area does not exceed - , and can be as small a s  

1. When In g we use values of m +a and m -b further away from the mode than 
those glven above, the area under g 1s bounded from above by f ( m  ) (a +b ). 

Proof of Theorem 2.6. 
We wl l l  prove the theorem for a monotone denslty f on [ m 9 ~ )  only. "he 

rUll theorem T3en follows by a slmple comblnatlon of antlsymmetrlc results. We 
h l n  thus w 1 ~ h  the lnequallty 

g ( 5 )  = mln(f ( m )  , 1 ( m  +a ) e ( z - ( m + a ) ) h ' ( m + a )  > .  
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The cross-over polnt between the top curves 1s at a polnt t between m and 
m+a: 

1 f ( m >  ) .  z = m + a +  log( 
h ’ ( m + a )  f ( m + a )  

The area under the curve g to the rlght of m 1s glven by 
00 

(2 -U )h’(m + a  dx f ( m  I(2-m )+Jf  ( m  +a  > e  
2 

The derlvatlve of thls expresslon wlth respect to a 1s 

f ( m  )h”(m +a )(l+h ( m  +a )-h (m  )) 
ht2(m +a ) 

whlch 1s zero for h ( m  +a )=h ( m  )-1, Le. f ( m  +a )= ( m ) .  Note also that 
e 

h”(m +a  )LO, and thus that the derlvatlve 1s nonposltlve for values of m +a 
smaller than thls threshold value, and that I t  1s nonnegatlve for larger values of 
m + a ,  so that we do lndeed have a global mlnlmum for the area under g . At the 
suggested value of m + a ,  the area 1s glven by a f  ( m  ). For m +a larger than the 
suggested value, the area 1s bounded from above by af (m ), slnce h‘(m +a  )LO, 

To obtaln a dlstrlbutlon-free upper bound for the area af ( m )  when a 1s 
optlmally chosen, we use the lnequallty of Theorem 2.1. If we use the upper 

h ( m  )-h ( m  +a )-1Lo. 

1 bound on f glven there, and set I t  equal t o  -, then the solutlon 1s a number 

greater than af ( m ) .  But that solutlon 1s - . Thus, for the optlmal a ,  

e 
e 

e -1 

Theorem 2.6 1s important. If a lot 1s known about the denslty in questlon, 
good reJectlon algorlthms can be obtalned. Several examples wlll be glven below. 
If we want to bound f from above by a comblnatlon of pleces of exponentlal 
functlons, then the area can be reduced even further although, as we wlll see 
from the examples glven below, the reductlon 1s often hardly worth the extra 
effort slnce the reJectlon constant 1s already good to begln wlth. 

The formal algorlthm 1s as follows: 



VII.2.LOG-CONCAVE DENSITIES 301 

Rejection with two exponential tails touching at m-b and m+a 

[SET-UP] 
m is the mode; a , b  2 0  are assumed given. 
A, +--l/h'(m +a ),AI +-l/h'(m -b ) (where h =log(f )). 

a* -a  + A r  log( f ( m + a ) ) ,  b*-b+A~log( f ( m - b ) ) ,  (m+a*  and m-b* are the thres- 

f m - f  ( m )  

f m  f m  
holds') 
Compute the mixture probabilities; u +-AI + A r  + a  * + 6 * , p I  t A I  / u  , pr +-A, /a , 

[GENEWTOR] 
REPEAT 

Pm + - ( a * + b * ) / u .  

Generate lid uniform [0,1] random variates u , v. 
IF' U s p m  THEN 

Generate a uniform [0,1] random variate Y (which can be done as 

X t m  -b* + Y ( a * + b * )  

Accept * [ V f m  < f  (X)I 

Generate an exDonential random variate E (which can be done as 

Y+u/pm 

ELSE IF' p m  < U S p m  +Pr THEN 

X+-m+a*+A,E  

Accept - [  V/ e - < f (x)] (whlch is equivalent to Accept -(X+ +**) ) /A,  

U-Pm 
-[ Vf e -E  5 f (x)], or to  Accept -[ vf - Lf (X)l) 

Pr 

ELSE 
Generate. an exponential random variate E (which can be done as 

U 4 P m  +Pr 1 
1-Pm -Pr 

E +-log( 11% 

X+m-b*-XIE 
If (x)] (which b equivalent M Accept (X-(m-b*))& Accept -[vf ,,, e 

U 4 P m  +Pr 1 
1-Pm -Pr 

--[Vim < f  (x)], or to Accept --[vfm If (XI11 

UNTIL Accept 
RETURN X 

In most lmplementatlons, thls algorlthm can be conslderably slmpllfled. For one 
thlng, the set-up step can be Integrated In the algorlthm. When the denslty IS 
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monotone or symrnetrlc unlmodal, other obvlous slmpllflcatlons are posslble. 

Example 2.1. The exponential power distribution (EPD). 
The EPD denslty wlth parameter T>O 1s 

Generatlon for thls denslty has been dealt wlth In Example N.6.1, by transfor- 
matlons 'of gamma random varlables. For T> 1, the denslty 1s log-concave. The 
values of a , b  In the optlmal reJectlon algorlthm are easlly found In thls case: 
a = b  =l. Before glvlng the details of the algorlthm, observe that the reJectlon 
constant, the area under the domlnatlng curve, 1s f (O)(a +b ), whlch 1s equal to 
l/l?(l+-). As a functlon of 7, the rejection constant 1s a unlmodal functlon wlth 

value 1 at the extremes ~ = 1  (the Laplace denslty) and ~ f c o  (the unlform [-1,1] 

1 
7 

'I I 
denslty), and peak at T== . At  the peak, the value 1s 

(see e.g. Abramowltz and Stegun (1970, p. 259)). Thus, unl- 
0.4616321449... 

1 
0.885603 1944. .. 
formly over all ~21, the reJectlon rate 1s extremely good. For the lm ortant case 

of the normal denslty (7=2) we obtaln a value of l/r(-) 3 = &. The algo- 
2 

rlthm can be summarlzed as follows: 
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REPEAT 
Generate a uniform [0,1] random variate U and an exponential random variate E*.  

1 
7 

IJ? U<l- -  

THEN 
1 
7- 

X-U (note that X Is uniform on [O,i--]) 

Accept --[ I X I ‘<E*] 

Generate an exponential random variate E (which can be done as 
ELSE 

E *-log( 7( I- U ))) . 
Xtl--+-E 

Accept -[ I X I ‘ e E + E * ]  

1 1  
7 - 7  

UNTIL Accept 
RETURN SX where 5‘ is a random sign. 

The reader wlll have llttle dlmculty verlfylng the valldlty of the algorlthm. Con- 
slder the monotone density on [O,m) glven by ( r ( l+L)) - le-zr .  Thus, wlth 

m =O,a =l,h’(l)=-7, we obtaln a*=l--. Slnce we know that I x I ‘ 1s dlstrl- 

buted as a gamma (-) random varlable, I t  1s easlly seen that we have at the 

same tlme a good generator for gamma random varlates wlth parameter less than 
one. For the sake of easy reference, we glve the algorlthm In full: 

7 
1 
7 

1 
7 
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Gamma generator with parameter a less than one 

REPEAT 
Generate a uniform [0,1] random variate u and an exponential random variate E*. 
IF u 5 1 - a  

THEN 
1 - 

x-u ' (note that u is uniform on [O,i-a]) 
Accept -[ I X I s E * ]  

Generate an exponential random variate E (which can be done as 
ELSE 

1- u E +--log( -)). 
U 

1 - 
X-(1-a +aE)O 
Accept +--[ I x I <E+E*] 

UNTIL Accept 
R E T U R N X  

Example 2.2. Complicated densities. 
For more compllcated densltles, the equatlon f ( ~ ) = f  ( m ) / e  can be 

dlmcult to solve expllcltly. It 1s always posslble to take the pesslmlstlc, or 
mlnlmax, approach, by settlng a and b both equal to . In some 

cases, 6 can be set equal to 0. In the set-up of the algorlthm, I t  Is stlll necessary 
to evaluate the derlvatlve of log(f ) at the polnts m + a ,  m -b  , but thls can be 
done expllcltly when f 1s glven In analytlc form. Thls approach can be 
automated for the beta and generallzed lnverse gausslan dlstrlbutlons, for exam- 
ple. When rn +a or m -b  fall outslde the support of f , one should conslder 
one-talled domlnatlng curves wlth the constant sectlon truncated at the relevant 
extrema1 polnt of the support. For the beta denslty for example, thls leads to an 
algorlthm whlch resembles In many respects algorlthm BBPE of Schmelser and 
Babu (1980). 1 

' e  
( e  -1)f ( m  1 
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Example 2.3. Algorithm B2PE (Schmeiser and Babu, 1980) for beta 
random variates, 

In 1980, Schmelser and Babu proposed a hlghly emclent algorlthm for gen- 
eratlng beta random variates wlth parameters a and b when both parameters 
are at least one. Recall that for these values of the parameters, the beta denslty 
Is log-concave. Schmelser and Babu partltlon the lnterval [O,i] lnto three lnter- 
vals: In the center lnterval, around the mode m = , they use as dom- 

lnatlng functlon a constant functlon f ( m ) .  In the tall lntervals, they use 
exponentlal domlnatlng curves that touch the graph of f at the breakpolnts. At 
the breakpolnts, Schmelser and Babu have a dlscontlnulty. Nevertheless, analysls 
slmllar t o  tha t  carrled out In Theorem 2.6 can be used to obtaln the optlmal 
placement of the breakpolnts. Schmelser and Babu suggest placlng the break- 
polnts at the lnflectlon polnts of the denslty, If they exlst. The lnflectlon polnts 
are at 

a -1 
u + 6  -2 

max( m -o,O) 

and 

m h ( m  +a, l )  

where a = If a +b > 3  and a = 00 otherwlse. Two lnflectlon 

polnts exlst on [0,1] when m -a and m +a both take values In [0,1]. In that case, 
the area under the domlnatlng curve 1s easlly seen to be equal to 

l. ( ( m  +a)(l-m -a)+(m -a)(l-m +a))) - - f ( m  a(a  +b -2) 

= f (m)(2a+ 2m(1-m)(1- 1) 
O(U + 6  -2) a + 6 - 3  

1 m (1-m ) 
= f (m)(20+2.\/ u +b -3 

= 4f (771 )a . 

Thus, we have the lnterestlng result that the probablllty mass under the 
exponentlal talls equals that under the constant center plece. One or both of the 
talls could be mlsslng. In those cases, one or both of the contrlbutlons f ( m ) a  
needs to be replaced by f ( m  )m  or f ( m  )(1-m ). Thus, 4f  ( m  )a 1s a conserva- 
tlve upper bound whlch can be used In all cases. It can be shown (see exerclses) 

tha t  as a ,b +00, 4f ( m  )a+@. Furthermore, a llttle addltlonal analysls 

shows that the expected area under the domlnatlng curve Is unlformly bounded 
over all values of a ,b 21. Even though the  A t  1s far from perfect, the algorlthm 
can be made very fast by the Judlclous use of the squeeze prlnclple. Another 
acceleratlon trlck proposed by Schmelser and Babu (algorlthm B4PE) conslsts Of 

Partltlonlng [0,1] lnto 5 lntervals lnstead of 3 ,  wlth a llnear domlnatlng curve 

lr 



306 

added In the new Intervals. 

MI.2.LO G- CONCAVE DENSITIES 

Algorithm B2PE for beta (a,b) random variates 

[SET-UP] 
a -1 

m t  
a+b-2 

I F a + b > 3 T H E N a c  

IF a <2 

THEN z +o,p t o  
ELSE 

z t m - u  
a - 1  b - 1  xt--- 

2 1-z 
(a  - ~ ) l o g ( ~ ) + ( b - l ) l o g ( l - o ) + ( a  +b-2)log(a + b  -2) 

4 -1 b -1 v +e 

Now, z is the left breakpoint, p the probability under the left exponential 
ponential parameter, and v the value of the normalized density f at z . 
IF b < 2  

THEN y c 1 , q  t 0  

ELSE 
y+m+a 

a - 1  b -1 pc--+- 
Y 1-Y 

( 4  - 1 ) l o g ( L ) + ( b  - 1 ) l o g ( ~ ) + ( o  + b  -2)lOg(4 + b  -2) 
4 -1 w -e  

tail, the ex- 

Now, y is the left breakpoint, q the probability under the left exponential tail, p the ex- 
ponential Parameter, and w the value of the normalized density f at y . 

I’  
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[GENERATOR] 
REPEAT 

Generate iid uniform [O,l] random variates u , v. Set u - u (p +q + y -x ). 
CASE 

u < y - x :  
X - x  +u (x is uniformly distributed on [x ,y I )  
m X < m  

1 (X-x )(l-V ) 
m -x 

Y-m 

THEN Accept -[ v < v  + 
ELSE Accept --[ v < w + (Y -X)(l-W 1 ] 

y-x < U < y - x + p :  
U + '-(? -' 
X-x +--log( U )  (X is exponentially distributed) 

(create a new uniform random variate) 
P 
1 
x 

1 X(X-x)+1 
U 

Accept -[ v 5 
v- vuv (create a new uniform random variate) 

U - '-(' -' +' 
1 x-y --log( u) (x is exponentially distributed) 
cc 

Accept +-[ V 5 
v - Vuw (create a new uniform random variate) 

y-x+p s u :  
(create a new uniform random variate) 

Q 

P(Y -X)+11 
U 

IF NOT Accept THEN 
T -log( V )  
IF T >-2(a + b  -Z)(X-m)2 

THEN 
X 1-x Accept -[ T < ( a  -l)log( -)+( b -l)log( -)+( a + b -2)log( a + b -2)] 

a -1 b -1 
UNTIL Accept 
RETURN x 

The algorlthm can be Improved In many ways. For example, many constants can 
be computed In the set-up step, and qulck reJectlon steps can be added when x 
Palls outslde [0,1]. Note also the presence of another qulck reJectlon step, based 
upon the followlng lnequallty: 
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The qulck reJectlon step 1s useful In sltuatlons Just llke this, 1.e. when the A t  1s 
not very good. 

Example 2.4. Tails of log-concave densities. 
When f 1s log-concave, and a random varlate from the rlght tall of f , 

truncated at t > m  where m 1s the mode of f , 1s needed, one can always use the 
exponentlal maJorlzlng functlon: 

The flrst systematlc use of these exponentlal talls can be found In Schmelser 
(1980). The expected number of lteratlons In the reJectlon algorlthm 1s 

2.7. Exercises. 
1. 

1 
2 

The Pearson IV density. The Pearson IV denslty on R has two parame- 
ters, m > - and s ER , and 1s glven by 

e -5 arctanz C f ( X I =  
(1+x2)" 

Here c 1s a normallzatlon constant. For s =O we obtain the t denslty. Show 
the followlng: 
A. If X 1s Pearson N ( m  ,s), and m 21, then arc tan(X)  has a log- 

concave denslty 

S 
B. The mode of g occurs at arctan(- 1- 2( m -1) 
C. Glve the complete reJectlon algorlthm (exponentlal verslon) for the dls- 

trlbutlon. For the symrnetrlc case of the t denslty, glve the detalls of 
the reJectlon algorlthm wlth reJectlon constant 2. 
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D. 
Prove that a mlxture of two log-concave densltles 1s not necessarily log- 
concave. 
Glve the detalls of the rejection algorlthm that 1s based upon.the lnequallty 
of Theorem 2.4. 

Log-concave densltles can also occur ln R d .  For example, the multlvarlate 
normal denslty 1s log-concave. The closure under convolutlons also holds In 
R (Davldovlc et al., 1969), and marglnals of log-concave densltles are agaln 
log-concave (Prelcopa, 1973). Unfortunately, I t  1s useless to  try to look for a 
generallzatlon of the lnequalltles of thls sectlon t o  R wlth d 2 2  because of 
the followlng fact whlch you are asked to show: the supremum over all log- 
concave densltles wlth mode at 0 and f (0)=1 1s the constant functlon 1. 

To speed up the algorlthms of thls sectlon at the expense of preprocesslng, 
we can compute the normallzed log-concave denslty at n >1 carefully 
selected polnts, and use rejectlon (perhaps comblned wlth squeezlng) wlth a 
domlnatlng curve conslstlng of several pleces. Can you glve a unlversal 
reclpe for locatlng the polnts of measurement so that the rejectlon constant 
1s guaranteed to be smaller than a functlon of n only, and thls function of n 
tends to  1 as n --too? Make sure that random varlate generatlon from the 
domlnatlng denslty 1s not dlfflcult, and provlde the detalls of your algorlthm. 

6. Thls Is about the area under the domlnatlng curve In algorlthm B2PE 
(Schmelser and Babu, 1980) for beta random varlate generatlon (Example 
2.3). Assume throughout that a ,b 21. 
(1) a s m  If and only If a 2 2 ,  a<l-m If and only If 6 2 2 .  (Thus, for 

Flnd a formula for the computatfon of c . 
2. 

3. 

4. 

5. 

a ,b 2 2 ,  the area under the domlnatlng curve 1s preclsely 4f (m)a. )  - 
(11) Ilm 4f  (rn )a = d:. Use Stlrllng's approxlmatlon. 

a , b  -03 

(111) The area under the domlnatlng curve 1s unlformly bounded over all 
a ,b 21. Use sharp lnequalltles for the gamma functlon to bound f ( m  ). 
Conslder 3 cases: both a ,b 2 2 ,  one of a ,6 1s >_2, and one 1s <2, and 
both a ,b are <2. Try to obtaln as good a unlform bound as posslble. 

(lv) Prove the qulck reJectlon lnequallty used In the algorlthm: 
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3. INEQUALITIES FOR DENSITIES. 

3.1. Motivation. 
The prevlous sectlon has shown us the utlllty of upper bounds In the 

development of unlversal methods or black box methods. The strategy 1s to 
obtain upper bounds for densltles In a large class whlch 

(1) have a small Integral; 
(11) are deflned in terms of quantltles that are elther computable or present In 

the deflnltlon of the class. 
For the log-concave densltles wlth mode at 0 we have for example obtalned an 
upper bound In sectlon VII.2 wlth Integral 4, whlch requlres knowledge of the 
posltlon of the mode (thls 1s In the deflnltlon of the class), and of the value of 
f (0) (thls can be computed). In general, quantltles that are known could lnclude: 

A. A unlform upper bound for f (called M); 
B. The r- th  moment pr : 
C. The value of a functlonal Jf 
D. A Llpschltz constant; 
E. A unlform bound for the s- th  derlvatlve; 
F. The entlre moment generatlng functlon M ( t ) ,  t €h !  ; 
G. The entlre dlstrlbutlon functlon F (a: ), z ER ; 
H. The support of f . 

When thls lnformatlon 1s cornblned In varlous ways, a multltude of useful dom- 
lnatlng curves can be obtalned. The goodness of a domlnatlng curve 1s measured 
In terms of Its lntegral and the ease wlth whlch random varlates wlth a denslty 
proportlonal to the domlnatlng curve can be generated. We show by example how 
some lnequalltles can be obtalned. 

3.2. Bounds for unimodal densities. 
Let us start  wlth the class of monotone densltles on [O,l] whlch are bounded 

by M .  Note that if M 1s unknown, I t  can easlly be computed as f (0). Thus, the 
only true restrlctlon Is that we must know that f vanlshes off [0,1]. The trlvlal 
lnequall ty 

1s not very useful, slnce the lntegral under the domlnatlng curve is M. There are 
several ways to lncrease the emclency: 
1. Use a table method by evaluatlng In a set-up step the value of f at many 

polnts. Baslcally, the domlnatlng curve 1s plecewlse constant and hugs the 
curve of f much better. These methods are very fast  but the need for extra 
storage (usually growlng wlth M ) and an addltlonal preprocesslng step 
makes thls approach somehow dlfferent. It should not be compared wlth 
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methods not requlrlng these extra costs. It wlll be developed systematlcally 
in chapter VIII. 

2. Use as much lnformatlon as posslble to lmprove the bound. For example, In 
the lnequallty f ($)<Ad, the monotonlclty 1s not used. 

3. Ask the user If he has addltlonal knowledge In the form of moments, quan- 
tlles, functlonals and the llke. Then construct good domlnatlng curves. 

We wlll lllustrate approaches 2 and 3. For all monotone densltles, the followlng 1s 
true: 
-~ 

Theorem 3.1. 
For all monotone densltles f on [O,co), 

If f 1s also convex, then 

Proof of Theorem 3.1. 
Flx a: >O. Then, by monotonlclty, 

z 

sf (a: 1 I If (Y 1 dY I 1 
0 

When f is also convex, we can In fact use a geometrlcal argument: If we wlsh to 
flnd the convex f for whlch f ( a : )  1s maxlmal, I t  sufflces to  conslder only trlan- 
gles. Thls class 1s the class of all densltles 2 a  (l-aa:)+ , Osz 5-. Thus, we flnd 

a for whlch f ( a : )  1s maxlmal. Settlng the derlvatlve wlth respect to a equal to  0 

glves the equatlon 1-ax-ax =0, 1.e. a =- . Resubstltutlon glves the bound. 

1 
U 

22 

The bounds of Theorem 3.1 cannot be improved in the sense that for every 
a : ,  there exlsts a monotone (or monotone and convex) f for whlch the upper 
bound 1s attalned. If we return now to  the class of monotone densltles on [0,1] 
bounded by M ,  we see that the followlng lnequallty can be used: 

The area under the domlnatlng curve 1s l+log(M). Clearly, thls 1s always less 
than M. In most appllcatlons the lmprovement In computer tlme obtalnable by 
Wing the last lnequallty 1s notlceabie If not spectacular. Let us therefore take a 
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moment to glve the detalls of the corresponding reJectlon algorlthm. The dom- 
lnatlng denslty for reJectlon 1s 

I t  has dlstrlbutlon functlon 

Uslng lnverslon for generatlon from 9 ,  we obtaln 

Rejection algorithm for monotone densities on [0,1] bounded by M 

REPEAT 
Generate iid uniform [OJ] random variates U ,  V 

I F U S  1+log(M) 
THEN 

X-- (l+log(M 1) 

IF VM < f  (X) THEN RETURN x 

x c l c  U(1+lor(Mn-1 

M 

ELSE 

M 
IF V <Xf (X) THEN RETURN X 

UNTIL False 

When f 1s also convex, we can use the lnequallty 

f I C’ (2) 

where 
n 

It has dlstrlbutlon functlon 

Uslng lnverslon for generatlon from 9 ,  we obtaln 
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Rejection algorithm for monotone convex densit.ts on [O,l 

REPEAT 
Generate iid uniform [OJ] random variates U , V . 
IFUS 

1+log( 2M ) 
THEN 

bounded by M 

X C -  (l+log('LM)) 
2M 

IF VM 5 f ( X I  THEN RETURN x 
ELSE 

IF v <2xf ( X )  THEN RETURN x 
UNTIL False 

The expected number of lteratlons now 1s whlch 1s for large M 
roughly speaklng half of the expected number of lteratlons for the nonconvex 
cases. 

2 

1 

X 
The functlon - 1s not lntegrable on [ l , ~ ) ,  so that Theorem 3.1 1s useless for 

handllng lnflnlte talls of monotone densltles. We have to tuck the talls under 
some lntegrable functlon, yet unlformly over all monotone densitles we cannot 

I 

X 
get anythlng better than -. Thus, additlonal lnformatlon 1s requlred. 

Theorem 3.2. 
Let f be a monotone denslty on [O,m). 

If s x r  f (x) dx L.ir <oo where r >0, then A. 

B. In any case, for all O < c r L 1 ,  
1 

(x >o) . 
(Sf 9" 

1 - f (5) L 
X f f  

I 
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Information A 

Proof of Theorem 3.2. 
For part A we proceed as follows: 

a 

For part B, we use the trlvlal observatlon 

w Y s >  5 J f O  .. 

For monotone densltles on [O,m), bounded by M =  f (0), Theorem 3.2 pro- 
vldes us wlth bounds of the form 

A 
X a  

f (z )  5 mln(M,-) (5 >o) 

where we can take (A ,a ) as follows: 

In all cases, the area under the domlnatlng curve 1s 
1 a-1 - -  - a A ~ M  a . 

a -1 

Furthermore, random varlate generatlon for the domlnatlng density can be done 
qulte easlly vla the lnverslon method or the Inverse-of-f method (sectlon N.6 .3 ) :  
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Theorem 3.3. 

Let g be the denslty on [O,oo) proportional to m i n ( M , T )  A where 

M>O,A >O,a > 1  are parameters. Then the followlng random variables X have 
denslty g : 

X 

1 

where U , V  are lid uniform [0,1] random varlates. A T  U 
A. x=(-) - M V U - 1  

1 - 
ux* If B. Let x* be (-) and let U be uniform on [0,1]. Then X t -  A 4  U 

M a -1 
a -1 X* U<- , a n d X t  else. 

1 - - a 
(UU-(a -1)) a-1 

Proof of Theorem 3.3. 
By the Inverse-of-f method (sectlon IV.6.3), it sufflces to note that a random 

variate with monotone denslty f can be obtained as Uf -I( Y )  where Y has den- 
slty f -'. It is easy to see that for monotone g not necessarily lntegratlng to one, 
U g - ' ( Y )  has denslty proportional to g If Y has denslty proportional to 9-l .  In 

our case, g - ' ( y )  = (-) , O < y  - -  <M. To generate Y with denslty proportional 

to thls, we apply the lnverslon method. Verlfy that MV has dlstrlbutlon 

function (-) on [O,M], which yields a denslty proportional to 9-l .  Plugglng 

thls Y back into Ug-'( Y )  proves part A. 

1 - 
A 4  
Y 

4 - 
1 

1-- 
Y 4  

M 

Part  B Is obtainable by straightforward inverslon. Note that x* is the break- 

the two areas Is 
1 

1 
a -1 

I-- 
AaM '(I+-). 

, X is distributed unlformly on [O,z*], and with the a -1 Thus, with probabillty - 
U 

complementary probablllty, X Is dlstributed as - X* where V Is uniformly dis- - V 4 - 1  

trlbuted on [0,1] (the latter random varlable has denslty decreaslng as x-' on 
[ ~ * , C O ) ) .  The unlform random varlates needed here can be recovered from the 
llnlform random varlate U used in the comparlson wlth a. . glven that 

a -1 

a -1 , aU-( a -1) 1s in turn C'<-, - u- 1s agaln uniform. Glven that U >- a -1 U 

U a -1 U 

I 
I 
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unlformly dlstrlbuted on [0,1]. 

For the sake of completeness, we wlll now glve the rejectlon algorlthm for 
generatlng random varlates wlth denslty f based upon the lnequallty 

f (x) 5 m l n ( M , - - )  A (x Lo) . 
X U  

Rejection method based upon part A of Theorem 3.3 

REPEAT 
Generate iid uniform [0,1] random variates u , v. 

1 

A 7  
Y X+U(-) 

UNTIL Y<f  (X) 
RETURN X 

The vaildlty of thls algorlthm 1s based upon the fact that  ( Y ,  Vg-'( Y ))=( Y , X )  
1s unlformly dlstrlbuted under the curve of g- ' .  By swapplng coordlnate axes, we 
see that ( X , Y )  1s unlformly dlstrlbuted under g , and can thus be used In the 
reJectlon method. Note that the power operatlon 1s unavoldable. Based upon 
part B, we can use reJectlon wlth fewer powers. 

I 
I 
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Rejection method based upon part B of Theorem 3.3. 

REPEAT 
Generate lid uniform [0,1] random varkates U , V 

a -1 
a 

IF us- 
THEN 

X + L  ux * 
IF V M S f ( X ) T H E N R E T U R N X  

X+Z*(aU-(a-l)) O - l  

a -1 

ELSE 
1 -- 

IF T/A <x" f (x) THEN RETURN x 
U N T L  False 

For both lmplementatlons, the expected number of computatlons of I 1s equal to 
the expected number of lteratlons, 

1 a-1  
E ( N )  = - a A Q M a  

a -1 

It 1s lnstructlve to analyze thls measure of the performance In more detall. Con- 
slder the moment verslon for example , where A =(r +i)p,. , a =r +1 and p r  Is 
the r -th moment of the monotone denslty. We have 

Theorem 3.4. 
Let E ( N ) , k f  ,r ,A ,a , p r  be as deflned above. Then for all monotone densl- 

tles on [O,oo), 

E ( N )  2 I+'. 
r 

For all monotone densltfes that are concave on thelr support, I 1 

Flnally, for all monotone log-concave densltles, I 1 

I 

I 
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Proof of Theorem 3.4. 
We, s tar t  from the expresslon 

1 - 
E ( N )  = ( 1 + 1 )  ((1' +l)Mr p ,  ) , + l  . 

r 

The product Mpr 1s scale lnvarlant, so that we can take M = i  without loss of 
generallty. For all such bounded densltles, we have 1-F (x ) z ( l - x  )+. Thus, 

03 (x, 

p,  = J x " f  (x) dx = Jrxr- ' ( l -F(x) )  dz 
0 0 

1 

> - JrXr-l(l-x) dx 
0 

r 1 
r 3-1 r fl 

- - I-- = - . 
Thls proves the flrst part of the theorem. Note that we have lmpllcltly used the 
fact that every random varlable wlth a denslty bounded by 1 on [O,co) 1s sto- 
chastlcally larger than a unlform [0,1] random varlate. 

For the second part, we use the fact that all random varlables wlth a mono- 
tone concave denslty satlsfylng f (O)=M=l are stochastlcally smaller than a 

2 random varlable wlth denslty (1--)+ (exerclse 3.1). Thui, for thls denslty, 
2 

Resubstltutlon glves us part B for concave densltles. Flnally, for log-concave den- 
sltles we need the fact that f (0)X 1s stochastlcally smaller than an exponentlal 
random varlate. Thus, In partlcuiar, 

00 

Mr p,  5 J y r  e-y  dy = r ( r  +I) . 
0 

Thls proves the last part of t h e  theorem. 

A brlef dlscusslon of Theorem 3.4 I s  in order here. Flrst of all, the lnequall- 
tles are qulte Inemclent when r 1s near 0 In vlew of the lower bound 
E ( N ) Z l + - .  Wh'at 1s lmportant here 1s that for lmportant subclasses of mono- 

tone densltles, the performance 1s unlformly bounded provlded that we know the 
r - th  momeiit of the denslty In case. For example, for the log-concave densltles, 

1 
T 
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r 
1 
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E ( N ) <  I Approximate value 
di I 2.82 ... 

we have the followlng values for the upper bound for E ( N ) :  

Ita3 I t 2  I I 

The upper bound 1s mlnlmal for T near 6. The algorlthm 1s guaranteed to per- 
form at Its best when the slxth moment 1s known. In the exerclses, we wlll 
develop a sllghtly better lnequallty for concave monotone densltles. One of the 
features of the present method 1s that we do not need any lnformatlon about the 
support of f - such lnformatlon would be requlred If ordlnary rejectlon from a 
unlform denslty 1s used. Unfortunately, very few lmportant densltles are concave 
on thelr support, and often we do not know whether a density 1s concave or not. 

The famlly of log-concave densltles is more lmportant. The upper bound for 
E ( N )  In Theorem 3.4 has acceptable values for the usual values of T : 

2.7256. .. 

-24 2.9511 ... 

In thls case, the optlmal lnteger value of T 1s 2. Note that If p,. 1s not known, 

but 1s replaced ln the algorlthm and the analysls by Its upper bound 9 

then both the algorlthm and the performance analysls of Theorem 3.4 remaln 
valld. In that case, we obtain a black box method for all log-concave densltles on 
[O,oo) wlth mode at 0, as In the prevlous sectlon. For T =2, the expected number 
Of lteratlons (about 2.72) 1s about 30% larger than the algorlthm of the prevlous 
sectlon whlch was speclally developed for log-concave densltles only. 

r(r +I) 
M' 
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Theorem 3.5. 
When f Is a denslty In L i p , ( C )  for some C >0, a E ( O , l ] ,  then 

3.3. Densities satisfying a Lipschitz condition. 
We say that a functlon f 1s Lipschitz (C ) when 

When f 1s absolutely contlnuous wlth a.e. derlvatlve f', then we can take 
C=sup I f' I . Unfortunately, some lmportant functlons are not Llpschltz, such 
as 6. However, many of these functlons are Llpschltz of order a: formally, we 
say that f 1s Llpschltz of order a wlth constant C (and we wrlte f ELip , (C) )  
when 

Here aE(O,l] 1s a constant. It can be shown (exercise 3.6) that the classes 
L i p J C )  for a>l contaln no densltles. The fundamental lnequallty for the 
Llpschltz classes Is glven below: 

a 
1 -  

Here F Is the dlstrlbutlon functlon for f . In partlcular, for a=l, we have 

j (z 1 5 d 2 ~  mln(F (z ) , i - ~  (a: >) . 

Proof of Theorem 3.5. 
Flx 5 , and deflne y =f (z ). Then Ax z >a: .  We clearly have 

I (2 1 2 I (5 1-c (2 --5 1" f 

The denslty f whlch ylelds the maxlmal value for f ( z )  1s equal to the lower 
bound for f (2 ) glven above. It vanlshes beyond 

1 

z* = z+(- f (-5)); 

C 
By lntegratlon of the prevlous lnequallty we have 

Z* 

1-F(z) 2 J(/ (z)-C(z-z)") dz 
X 
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a+ 1 1 .~ 
Ly -- - 

= ! ( a : )  - C " .  
@+l 
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By symmetry, the same lower bound 1s valld for F ( z ) .  Rearranglng the terms 
glves us our result. 

Theorem 3.5 provldes us wlth an lmportant brldglng devlce. For many dls- 
trlbutlons, tall lnequalltles are readlly avallable: standard textbooks usually glve 
Markov's and Chebyshev's lnequalltles, and these are sometlmes supplemented by 
varlous exponentlal lnequalltles. If f 1s In L i p a ( C )  on ( 0 , ~ )  (thus, a dlscon- 
tlnulty could occur at 0), then we stlll have 

Before we proceed wlth some examples of the use of Theorem 3.5, we collect some 
of the best known tail lnequalltles In a lemma: 

Lemma 3.1. 

lng lnequalltles are valld: 
Let F be a dlstrlbutlon functlon of a random varlable X .  Then the follow- 

, T >O (Chebyshev's lnequallty) . 
A- P ( I X I L z > L  I ,  I '  

I *  I 
B. l-F(z) 5 M ( t ) e - t Z  , t >O where M ( t ) = E ( e t X )  1s the moment generat- 

lng functlon (Markov's lnequallty); note that by symmetry, 
~ ( z )  5 M ( - t ) e t Z  , t >o. 

C. For log-concave f wlth mode at 0 and support on [O,co), 
l - ~ ( z )  < - e - f ( o ) z .  

D. For monotone f on [O,W), l-F(z) 5 (-) 'U , X , T > O  
r +1 12 1 '  

I .  

(Narum 1 's lne qual 1 t y ). 

Proof of Lemma 3.1. 

that  1c, 1s a nonnegatlve functlon at least equal to one on a set A . Then 
Parts A and B are but speclal cases of a more general lnequallty: assume 

P ( X E A )  = s d F ( z )  5 I$(.) d F ( z )  L E ( $ ( X ) ) .  
A A 

For part A, take A =[z,co)U(-m,z] and $(y)= u. For part B, take 
12 I '  
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A =is ,m) and $(y )=e t ( y - z )  for some t >O. Par t  C follows slmply from the fact 
that for log-concave densltles on [O,oo) wlth mode at 0, f (0)X 1s stochastlcally 
smaller than an exponentlal random varlable. Thus, only part D seems non- 
trlvlal; see exerclse 3.7. 

If lnequalltles other than those glven here are needed, the reader may want 
to consult the survey artlcle of Savage (1961) or the speclallzed text by Godwln 
(1964). 

Example 3.1. Convex densities. 
When a convex denslty f on [O,oo) 1s In Lip ,(C ), we can take C = f  '(0). 

By Naruml's lnequallty for monotone densltles, 
~ 

d 2 f  l(o)(-)r T p r  

?-+l ) ,  r - f (x) I m w  (O), 
X 2  

where pr =E ( ] X I ' ). Thls 1s of the general form dealt wlth In Theorem 3.3. It 
should be noted that for thls lnequallty to  be useful, we need T > 2 .  I 

Example 3.2. Densities with known moment generating function. 
Patel, Kapadla and Owen (1976) glve several examples of the use of moment 

generatlng functlons M ( t  ) In statlstlcs. Uslng the exponentlal verslon of 
Markov's lnequallty, we can bound any Lip C ) denslty as follows: 

Here t >O 1s a constant. There 1s nothlng that keeps us from maklng t depend 
upon x except perhaps the slmpllclty of the bound. If we do not wlsh to  upset 
thls slmpllclty, we have t o  take one t for all x. When f 1s also symmetrlc about 
the orlgln, then the bound can be wrltten as follows: 

f (z 1 L cg (a: 1 
t 

t $2 I t where g ( x ) = - e  1s the Laplace denslty wlth parameter -, and 2 
c = d 3 2  C M ( t  ) / t 2  Is a constant whlch depends upon t only. If thls bound 1s 

I 
--. 
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used In a reJectlon algorlthm, the expected number of lteratlons 1s c .  Thus, the 
best value for t is the value that  mlnlmlzes M ( t ) / t 2 .  Note that  c lncreases 
wlth C (decreaslng smoothness) and wlth M ( t )  (lncreaslng slze of the tall). Hav- 
lng picked t , the followlng reJectlon algorlthm can be used: 

Rejection method for symmetric Lipschitz densities with known moment gen- 
erating function 

[SET-UP] 
b 
[GENERATOR] 
REPEAT 

Generate E ,  u ,  independent exponential and uniform [0,1] random variates. 
2 
t 

X t - E  

UNTIL f (X) 
RETURN Sx where S is a random sign. 

Example 3.3. The generalized gaussian family. 
The generallzed gausslan famlly of dlstrlbutlons contalns all dlstrlbutlons for 

whlch for some constant s 20, M ( t  )<e s 2 t 2 / 2  for all t (Chow, 1966). The mean 
of these dlstrlbutlons exists and 1s 0. Also, as shown by Chow (1966), both 
1-F (z ) and F (-z ) do not exceed e-z2/(282) for all 5 >O. Thus, by Theorem 3.5, 
when f € L i p  l(C), 

The functlon In parentheses 1s a normal (0,s 6) denslty. The reJectlon constant 
IS S m. In Its crudest form the algorlthm can be summarlzed as folloWS: 
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Rejection algorithm for generaliced gaussian distiibutions with a Lipschitc den&- 
t Y  

REPEAT 
Generate N , E ,  independent normal and exponential random variates. 
X+Ns & 

UNTIL - 2 - E  N2 <log(,=-) f (XI 

RETURNX 

Example 3.4. Densities with known moments. 
The prevlous three examples apply to rather small famllles of dlstrlbutions. 

If only the r -th absolute moment p,  1s known, the we have by Chebyshev's lne- 
quallty, 

for all a: ,r  >O. Thls leads to the lnequallty 

whlch 1s only useful to us for r >2 (otherwlse, the domlnatlng functlon 1s not 

Integrable). The lntegral of the domlnatlng curve 1s a - p r  r '. Just whlch r 
r decreases monotonlcally wlth r 

1s best depends upon the dlstrlbutlon: - 
r - 2  

1 - 
r -2 

1 - 
whereas p t  r 1s nondecreaslng In r (thls 1s known as Lyapunov's lnequallty, 
whlch can be obtalned In one llne from Jensen's lnequallty). I 
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Example 3.5. Log-concave densities. 
Assume that f 1s log-concave wlth mode at 0 and support contalned In 

[O,ca). Uslng 1-F (a: ) '5 ('I, we observe that 

tlmes a Laplace denslty. It 1s thus not dlfflcult to see The top bound 1s - 
that the followlng algorlthm 1s useful: 

m 
f (0) 

Rejection method for log-concave Lipschitz densities 

REPEAT 
Generate iid exponential random variates E ,,E2 

RETURNX 

3.4. Normal scale mixtures. 
Many dlstrlbutlons In statlstlcs can be written as mlxtures of normal densl- 

tles In whlch the varlance 1s the mlxture parameter. These normal scale mlxtures 
have far-reachlng appllcatlons ranglng from modellng to mathernatlcal statlstlcs. 
The correspondlng random varlables X are thus dlstrlbuted as N Y ,  where N 1s 
normal, and Y 1s a posltlve-valued random varlable. The class of normal scale 
mlxtures 1s selected here to be contrasted agalnst the class of log-concave densl- 
tles. It should be clear that  we could have plcked other classes of mlxture dlstrl- 
butlons. 

There are two sltuatlons that should be clearly dlstlngulshed: In the flrst 
case, the dlstrlbutlon of Y 1s known. In the second case, the dlstrlbutlon of Y 1s 
not expllcltly glven, but I t  1s known nevertheless that X 1s a normal scale mlx- 
ture. The flrst case 1s trlvlal: one just generates N and Y and exlts wlth N Y .  In 
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DENSITY OF x 
Cauchy 
Laplace 
Logistic 

t* 

Symmetric stable (a) 

DENSITY OF Y 
Density of 1/N where N is normal 
Density of 
Density of 2K where K has the Kolmogorov-Smirnov distribution 

where E is exponential 

U 

2 
where G is gamma (-) 

Density of 6 where s is positive stable (5) 
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Theorem 3.6. 
Let f be the denslty of a normal scale mlxture, and let X be a random 

varlable wlth denslty f . Then f 1s symmetrlc and unlmodal, f (3)s f (0), and 
for all a 2-1, 

where 

P a  = E (  I x I a )  

1s the a - th  absolute moment of x, and 
l+ a 

1 
1+a 

l + a  - 
2 r(-) 2 

For a =1 and a =2, we have respectlvely, 

4 The areas under the domlnatlng curves are r e s p e c t l v e l y , - d m ,  and 

C (p2 f (0)2)1/3 where C = 3 ( 3 / e  )1/2(2n)-1/6. 
6 

Proof of Theorem 3.6. 

simllar upper bounds for the normal denslty. Note that we have, for all x ,o>O, 
The unlmodallty is obvlous. The upper bounds for f follow dlrectly from 

1+ a - 2 2  

l+a  2 
-- U 

e 20' < . - 1 x 1  e 

Observe that 

where Y 1s a random varlable used In the mlxture (recall that  x = N Y ) .  Using 
the normal-polynomlal bound mentloned above, thls leads to the lnequallty 
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But In vlew of the relatlonshlp X =NY , we have 
use the fact that 

l + a  I?(-) (whlch follows by deflnltlon of the gamma 

E ( Y ~ ) = E (  I X  I 4 ) m  I N I 4 ) .  

E (  I N I a ) &  = 2 

Now, 
1+ 4 - 

2 
Integral). Thls glves the maln lnequallty. The speclal cases are easlly obtalned 
from the maln lnequallty, as are the areas under the domlnatlng curves. 

The algorlthms of sectlon 3.2 are once agaln appllcable. However, we are In 
much better shape now. If we had Just used the unlmodallty, we would have 
obtalned the lnequallty 

whlch 1s useful for a >O. See the proof of Theorem 3.2. The area under thls dom- 
lnatlng curve 1s larger than the corresponding area for Theorem 3.6, whlch should 
come as no surprlse because we are uslng more lnformatlon In Theorem 3.6. 
Notice that,  Just as In sectlon 3.2, the areas under the domlnatlng curves are 
scale lnvarlant. The cholce of u depends of course upon f . Because the class of 
normal mlxtures contalns densltles wlth arbltrarlly large talls, we may be forced 
to  choose a very close to  0 In order to  make pa  flnlte. Such a strategy 1s 
approprlate for the syrnmetrlc stable denslty. 

3.5. Exercises. 
1. 

2. 

3. 

Prove the followlng fact needed ln Theorem 3.4: all monotone densltles on 
[ O m )  wlth value 1 at 0 and concave on thelr support are stochastlcally 
smaller than the trlangular denslty f (a: )=(1--)+, 1.e. thelr dlstrlbutlon 

functions all domlnate the dlstrlbutlon functlon of the trlangular denslty. 
In the reJectlon algorlthm lmmedlately preceding Theorem 3.4, we exlt some 
of the tlme wlth X +  . The square root 1s costly. The speclal 

case a = 3  1s very l ipor tan t .  Show that 1s distrlbuted as 
max(3U-2, W )  where W Is another unlform [0,1] random varlate. 
Concave monotone densities. In thls exerclse, we conslder densltles f 
whlch are concave on thelr support and monotone on [O,co). Let us use 

2 

2 

X* 

UU-(a -1) 

M= f (o), p r  =Jz' f (x) d z .  
2I-l' ( T  +I> 

-M >+I. 3: r + I  
A. Show that f (a:) 5 mln(M,( 

1 - 
B. Show that the area under the domlnatlng curve 1s 2-2'+' tlmes the 
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area under the domlnatlng curve shown In Theorem 3.4. That is, the 
area 1s 

1 - 1 r 
1 -  
r 

- 
(2-2 +l )(I+-)M + l  ( ( r  +l)pr ) +l  

C. Notlng that the Improvement 1s most outspoken for r = i  (2-6250.59)  
and r =2 and that I t  1s negllglble when r 1s very large, glve the detalls 
of the reJectlon algorlthm for these two cases. 

Glve the strongest counterparts of Theorems 3.1-3.4 you can And for unlmo- 
dal densltles on the real llne wlth a mode at 0. Because thls class contalns 
the class dealt wlth In the sectlon, all the bounds glven In the sectlon remaln 
valld for f ( I a: I ), and thls leads to  performances that are preclsely double 
those of the varlous theorems. Mlmlcklng the development of sectlon VII.2 
for log-concave densltles, thls can be lmproved If we know F (0), the value of 
the dlstrlbutlon functlon at 0, or are wllllng to apply Brent's mlrror prlnclple 
(generate a random varlate X wlth denslty f (a:)+! ( -a : )  ,a: >0, and exlt 

f ) respec- wlth X or -x wlth probabllltles 

tlvely ). Work out the detalls. 
5. Compare the rejectlon constant of Example 3.5 (log-concave densltles on 

[O,oo)) wlth 2, the reJectlon constant obtalned for the algorlthm of sectlon 
VII.2. Show that I t  1s always at least 2, that Is, show that for all log- 
concave densltles on [O,co) belonglng to  Lip 

4. 

f (. >+f (-a: 1 
and f (a: >+f (-.a: 1 

C ), 

Hlnt: Ax C ,  and try to  And the denslty ln the class under conslderatlon for 
which f (0) 1s maxlmal. Conclude that one should never use the algorlthm of 
Example 3.5. 

Show that the class L i p a ( C )  has no densltles whenever a > l .  

Prove Naruml's lnequalltles (Lemma 3.1, part D). 
When f 1s a normal scale mlxture, show that for all a >0, the bound of 
Theorem 3.6 1s at least as good as the correspondlng bound of Theorem 3.2. 

Show that f 1s an exponentlal scale mlxture If and only If for all a: >0, the 
derlvatlves of f are of alternatlng slgn (see e.g. Feller (1971), Kellson and 
Steutel (1974)). These mlxtures conslst of convex densltles densltles on [O,m). 
Derlve useful bounds slmllar to those of Theorem 3.6. 

lG. The z-distribution. Barndorff-Nlelsen, Kent and Sorensen (1982) lntro- 
duced the class of z-dlstrlbutlons wlth two shape parameters. The sym- 
metric members of thls famlly have denslty 

( a : E R ) ,  

6. 

7. 
8.  

8 .  

1 
f ( a : > =  ... 

4a Ba,a cosh2' (L) 
2 
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where a >O Is a parameter. The translatlon and scale parameters are omit- 
ted. For a=1/2,  thls gives the hyperbollc coslne dlstrlbutlon. For a = i  we 
have the loglstlc dlstrlbutlon. For lnteger a I t  1s also called the generallzed 
loglstlc dlstrlbutlon (Gumbel, 1944). Show the followlng: 
A. The symrnetrlc z -dlstrlbutlons are normal scale mlxtures (Barndorfl- 

Nlelsen, Kent and Sorensen, 1982). 

B. A random varlate can be generated as log(-) where Y 1s symmetrlc 

beta dlstrlbuted wlth parameter a .  

If a random variate 1s generated by reJectIon based upon the lnequalltles 
of Theorem 3.8, the expected tlme stays unlformly bounded over all 
values of a .  

Addltlonal note: the general z dlstrlbutlon wlth parameters a ,b > O  1s 

defined as the dlstrlbutlon of log(-) where Y 1s beta ( a  ,b ). 

Y 
1- Y 

C. 

Y 
1- Y 

11. The residual life density. In renewal theory and the study of Polsson 
processes, one can assoclate wlth every dlstrlbutlon functlon F on [O,oo) the 
resldual llfe denslty 

I-F ( X  ) 
c1 

f w =  9 

where p=!(l-F ) 1s the mean for F . Assume that besldes the mean we also 
know the second moment p2. Thls 1s the second moment of F ,  not f . Show 
the followlng: 

B. The black box algorlthm shown below 1s valld and has reJectlon con- 
stant n&/p. The reJectlon constant 1s at least equal t o  n, and can be 
arb 1 t r arlly 1 arge . 

REPEAT 
Generate a Cauchy random variate Y ,  and a uniform [0,1] random vari- 
ate U. 
x+&y 

UNTDL U S(l+Y*)(l-F(X)) 
RETURN x 

12. Assume that 1s a monotone denslty on [O,oo) wlth dlstrlbutlon functlon 
F .  Show that for all O s t  e x ,  

1-F ( t  ) 
x - t  ' 

f 
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Derlve from thls the lnequallty 
1 f (a: 1 I f (O)( l -F  (x -- f (0) )) * 

Note that these lnequalltles can be used to derlve reJectlon algorlthms from 
tall lnequalltles for the dlstrlbutlon function. 

4. THE INVERSION-REJECTION METHOD. 

4.1. The principle. 
Assume that f 1s a density on R , and that we know a few thlngs about f , 

but not too much. For example, we may know that f 1s bounded by M ,  or that 
f € L i p  l(C),  or that f 1s unlmodal with mode at 0. We have In addltlon two 
black boxes, one for computing f , and one for computing the dlstrlbution func- 
tlon F . The rejectlon method 1s not appllcable because we cannot a prlorl flnd an 
lntegrable domlnatlng curve as for example In the case of log-concave densltles. 
In many cases, thls problem can be overcome by the lnverslon-rejectlon method 
(Devroye, 1984). In Its most elementary form, I t  can be put as follows: consider a 
countable partltlon of R into Intervals [ai,ai+l) where i can take posltlve and 
negatlve values. Thls partition is Axed but need not be stored: often we can com- 
pute the next point ai from t' and/or the prevlous point. Generate a unlform 
[0,1] random varlate U ,  and flnd the lndex i for which 

Thus, lnterval [xi ,xi +1) Is chosen wlth probablllty F ( Z ~ + ~ ) - F  (ai ) by lnverslon. If 
the xi 's  are not stored, then some version of sequentlal search can be used. After 
2' 1s selected, return a random varlate X wlth denslty f restrlcted to the glven 
Interval. What we have galned 1s the fact that the lnterval 1s compact, and that 
In most cases we can easily And a unlform domlnatlng denslty and use reJectlon. 
For example, If f 1s known to be bounded by M ,  then we can use a unlform 
curve with value M. When f ELzp, (C) ,  we can use a triangular domlnatlng 
curve with value min(f (a i )+C(x-x i ) , f  (ai+l)+C(xi+l-a)). When f 1s unlmo- 
dal, then a domlnatlng curve wlth value max(f ( x i ) , f  (ai+l))  can always be used. 

There are two contributors to the expected time taken by the lnverslon- 
reJectlon algorithm: 
(1) E (N,  ): the expected number of computatlons of F In the sequentlal search. 
(11) E ( N , ) :  the expected number of lteratlons In the rejection method. It 1s not 

dlfflcult to see that thls 1s the area under the domlnatlng curve. 
In the example of a denslty bounded by M but otherwlse arbltrary, the area 
under the domlnatlng curve is 00. Thus, E (N, )=00. Nevertheless N ,  <00 with 
Probability one. Thls fact does not come as a surprlse conslderlng the magnitude 
of the class of densltles Involved. For unlmodal f , even with an lnflnlte peak at 
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the mode and two blg talls, I t  1s always posslble to construct a partltlon such 
that the area under the domlnatlng plecewlse constant functlon 1s flnlte. Thus, In 
the analysls of the dlfferent cases, I t  wlll be lmportant t o  dlstlngulsh between the 
famllles of densltles. 

The Inversion-reJectlon method 1s of the black-box type. Its main dlsadvan- 
tage 1s that programs for calculatlng both f and F are needed. On the posltlve 
slde, the famllles that can be dealt wlth can be glgantlc. The method 1s not 
recommended when speed 1s the most lmportant lssue. 

We look at the three famllles introduced above In separate sub-sections. A 
llttle extra tlme 1s spent on the lmportant class of unlmodal densltles. The 
analysls 1s In all cases based upon the dlstrlbutlonal propertles of N, and Nr . 

4.2. Bounded densities. 
As our flrst example, we take the famlly of densltles f on [O,co) bounded by 

Ad. There 1s nothlng sacred about the posltlve half of R , the choke 1s made for 
convenlence only. Assume that [O,co) 1s partltloned by a sequence 

.. 

O=so<z1<z,< - * * . 

Let us wrlte p i  =F ( Z ~ + ~ ) - F  (q ) , k 20. In a black box method, the lnverslon 
step should preferably be carrled out by sequentlal search, startlng from 0. In 
that case, we have 

00 
00 

P ( N ,  2.i) = p i  = j- f = l-F(q-1) (J.11). . .  
I = I  -1 ‘ J  -1 

Also, 
03 00 

E (N, ) = 1+ i p i  = (1-F (Xi )) . 
I ==o i =O 

Glven that we have chosen the i - th  Interval, the number of lteratlons In the 
reJectlon step 1s geometrlcally dlstrlbuted wlth parameter 
pi / ( M ( ~ i + ~ - z i  )) , k 20. Thus, 

Also, 
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Example 4.1, Equi-spaced intervals. 

lnverslon-rejection type. We can summarlze Its performance as follows: 
When ~i+~-zi=S>O, we obtaln perhaps the slmplest algorlthm of the 

The sequential search 1s lntlmately llnked wlth the slze of the tall of the denslty 
(as measured by E ( X ) ) .  It seems reasonable to take 6=cE ( X )  for some unlversal 
constant c . When we take c too large, the probabilities P (N; L j )  could be 
unacceptably hlgh. When c 1s too small, E ( N , )  1s too large. What  1s needed 
here 1s a compromise. We cannot choose c so as to mlnlmlze E (N,  +Nr ) for 
example, slnce thls 1s 00. Another method of deslgn can be followed: Ax j ,  and 
mlnlmlze P (Nr 2 j ) + P  (N, 2 j ). Thls 1s 

where J 1s a posltlve lnteger to be plcked later. We have used the following sim- 
ple lnequallty: 

Slnce we have dlfflculty mlnlmlzlng the orlginal expresslon and the last upper 
Sound, I t  seems loglcal to attempt to mlnlmlze yet another bound. This strategy 
1s dellberately suboptlmal. What  we hope to buy 1s slmpllclty and lnslght. 
Assume tha t  p=E ( X )  1s known. Then the tall sums of pi's  can be bounded from 

above by Markov's lnequallty. In partlcuiar, uslng also (l+-)j 1 

last expression 1s bounded by 

2 2  , j 21, the 
3 

p J M 6  + P+2 -+ 
6J 2 ( j + i )  6 ( j + i )  . 

The optlmai non-Integer J 1s 

:ind we will take the  celllng of thls. Our upper bound now reads 
p+2 1M6 

j +l 

+- 
2 
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The last thlng left t o  do 1s to mlnlmlze thls wlth respect to  6, the lnterval wldth. 
Notlce however that thls wlll affect only the second order term In the upper 
bound (coefflcient of -), ' and not the maln asymptotlc term. For the cholce 

6=dT, the second term 1s 
3 +1 

j +I 

The lmportant observatlon 1s that for any cholce of 6 that 1s lndependent of j , 

The factor k f p  1s scale lnvarlant, and Is both a measure of how spread out f 1s 
and how dlfflcult f 1s for the present black box method. For thls bound t o  hold, 
I t  1s not necessary to know p. The maln term In the upper bound 1s the contrlbu- 
tlon from N,. If we assume the exlstence of hlgher moments of the dlstrlbutlon, 
or the moment-generatlng functlon, we can obtaln upper bounds whlch decrease 
faster than l/& as j+co (exerclse 4.1). 1 

There are other obvlous chokes for lnterval slzes. For example, we could 
s tar t  wlth an lnterval of wldth 6, and then double the wldth of consecutlve lnter- 
vals. Because thls wlll be dealt wlth In greater detall for monotone densltles, I t  
wlll be sklpped here. Also, because of the better complexlty for monotone densl- 
tles, I t  1s worthwhlle to  spend more tlme there. 

4.3. Unimodal and monotone densities. 
Thls entlre subsectlon 1s an adaptatlon of Devroye (1984). Let us A r s t  reduce 

the problem to one that 1s manageable. If we know the posltlon of the mode of a 
unlmodal denslty, and If we can compute F (z ) at all 2 ,  whlch 1s our standlng 
assumptlon, then I t  1s obvlous that we need only conslder monotone densltles. 
These can be conven!ently fllpped around and/or translated to 0, so that all 
monotone densltles to  be consldered can be assumed t o  have a mode at 0 and 
support on [O,co). Unfortunately, compact support cannot be assumed because 
nonllnear transformatlons to  [0,1] could destroy the monotonlclty. One thing we 
can assume however 1s that we elther have an lnflnlte peak at 0 or an lnflnlte tall 
but  not both. Just use the followlng spllttlng devlce: 
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Splitting algorithm for monotone densities 

[SET-Up) 
Choose a number z >O. (If f is known to be bounded, set z -0, and if f is known to 
have compact support contained in [O,c 1, set z - c  .) 

[GENERATOR] 
Generate a uniform [O,l] random variate U. 
IF U > t  

t + F ( . )  

THEN generate a random variate x with (bounded monotone) density f ( z ) / ( l - t )  
on [ z  ,w). 
ELSE generate a random variate x with (compact support) density f ( ~ ) / t  on 
[o,z I .  

RETURN x 

Thus, I t  sumces to treat compact support and bounded monotone densltles 
separately. We wlll provlde the reader with three general strategles, two for 
bounded monotone densltles, and one for compact support monotone densltles. 
Undoubtedly, there are other strategles that could be preferable for certaln densl- 
tles, so no clalms of optlmallty are made. The emphasls 1s on the manner In 
whlch the problem 1s attacked, and on the lnteractlon between deslgn and 
analysls. A s  we polnted out In the lntroductlon, the whole story 1s told by the 
quantltles E (N,  ) and E (N ,  ) when they are flnlte. 

4.4. Monotone densities on [0,1]. 
In thls sectlon, we wlll analyze the followlng lnverslon-rejectlon algorlthm: 
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Inversion-rejection algorithm with intervals shrinking at a geometrical rate 

Generate a uniform [O,l] random variate U. 
x-1 

REPEAT 

UNTIL U L F ( X )  
REPEAT 

Generate two independent uniform [0,1] random variates, V ,  W . 
Y + X ( l + ( r - l ) V )  (Y  is uniform on [ X , r X ) )  

RETURN Y 

The constant T > 1  1s a deslgn constant. For a flrst qulck understandlng, one can 
take r = 2 .  In the flrst REPEAT loop, the lnverslon loop, the followlng lntervals 
are consldered: [-,1),[-,-), ... . For the case T =2, we have lnterval halvlng as 

we go along. For thls algorlthm, 

1 1 1  

T r 2  r 

4: -1) 
00 

E ( N , ) =  J f(.)da: 9 

i =1  r-1 

The performance of thls algorlthm 1s summarlzed In Theorem 4.1: 
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Theorem 4.1. 
Let f be a monotone denslty on [0,1], and deflne 

Then, for the algorlthm descrlbed above, 

and 
15 E ( N r )  5 r . 

The functlonal H (f  ) satlsfles the followlng lnequalltles: 
A. 1 < H ( f ) .  

B. log 5 H (f  ) (valld even If f has unbounded support). 1 1 $.I (2) d x l  

c. H(f 1 L 1+log(f (0)). 
1 

4 D. H(f ) 5 -+2Jlog+f (a:) f (a:) dx (valld even If f 1s not monotone). 
e o  

Proof of Theorem 4.1. 
For the flrst part, note that on [ r - i  ,r4'-')], 

Thus, resubstltutlon In the expresslon of E ( N , )  yields the flrst lnequallty. We 
also see that E (Nr )> 1. To obtaln the upper bound for E (Nr ), we use a short 
geometrical argument: 
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Inequality A uses the fact that  -log(% ) and f (z ) are both nonlncreaslng on [0,1], 
and therefore, by Steffensen's lnequallty (1925), 

1 1 1 

J-log(z ) f (a: ) da: 2 J-log(z ) dzJ f (a: ) dx = 1 . 
0 0 0 

Inequallty B uses the convexity of -log(z ) and Jensen's lnequallty. If x 1s a ran- 
dom varlable wlth denslty f , then 

H (f ) = E (-WX 2 -log(E (X 1) . 
Inequality C can be obtalned as a speclal case of another inequallty of 
Steffensen's (1918): In I t s  orlglnal form, lt states that If O l h  5 1 ,  and If g 1s 
nonlncreaslng and lntegrable on [0,1], then 

- 

1 a 

Js (a: ) h  (a: 1 5 Js (a: 1 da: 
0 0 

1 
where a = J h  (z ) dz . Apply thls lnequallty wlth g (a: )=-log(s ), h (a: )=- f ( a : )  

0 f (0) * 

f (0) 
Thus, a=- . Therefore, 

00 
1 - - J ye-Y dy = -(l+log(f (0)) . 

lo@;(! (0 ) )  f (0) 
Inequallty D 1s a Young-type lnequallty whlch can be found In Hardy, Llttlewood 
and Polya (1952, Theorem 239). 

In Theorem 4.1, we have shown that E(N,)<oo If and only If H(f )<m. 
On the other hand, E ( N , )  1s unlformly bounded over all monotone f on [0,1]. 
Our maln concern 1s thus wlth the sequentlal search. We do at least as well as in 
the black box method of sectlon 3.2 (Theorem 3.2), where the expected number of 
lteratlons In the rejectlon method was l+log(f (0)). We are guaranteed to have 
E (N,  )<l+(l+log(f (O)))/log(r ), and even tf f (O)=oo, the lnverslon-rejectlon 
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method can have E (N,  )<m. 

Example 4.2. The beta density. 
Conslder the beta (1,a +1) denslty f ( x ) = ( a  +l)(l-z)" on [0,1] where a >o 

1 1s a parameter. We have f (O)=a+l, E(X)=- . Thus, by lnequalltles B 

and C of Theorem 4.1, 
a +2 

log(a+2) 5 H ( f  ) 5 l+ log(a+1) .  

We have H ( f  )-log(a) as a- too:  the average tlme of the glven lnverslon- 
reJectlon algorithm grows as log(a ) as a 400. 

In the absence of extra lnformatlon about the denslty, I t  1s recommended 
that T be set equal to 2. Thls cholce also glves small cornputatlonal advantages. 
It 1s lmportant nevertheless to reallze that thls cholce 1s not optlmal In general. 
For example, msume that we wlsh to mlnlmize E (N,  +N,. ) , a crlterlon in whlch 
both contrlbutlons are glven equal welght because both N, and N,. count In 
effect numbers of computatlons of f and/or F .  The mlnlmlzatlon problem Is 
rather dlmcult. But 1f we work on a good upper bound for E (N,  +N,. ), then I t  1s 
nevert heless posslble to obtaln: 

Theorem 4.2. 

T >1, we have 
For the lnverslon-reJection algorithm of thls sectlon wlth deslgn constant 

lnf E (N, +N,. ) 
r > I  

I 



340 VII.4.INVERSION-RE JEC TION METHOD 

Proof of Theorem 4.2. 
We start from 

Resubstltutlon of the value of r glven In the theorem glves us the lnequallty. 
This value was obtalned by functlonal lteratlon applled to 

an equatlon whlch must be satlsfled for the mlnlmum of the upper bound (set the 
derlvatlve of the upper bound wlth respect t o  r equal to 0). The functlonal ltera- 
tlon was started at r =H (f ). That  the value 1s not bad follows from the fact 
that  for H ( f  ) L e ,  

so tha t  at least from an asyrnptotlc polnt of view no lmprovement 1s posslble over 
the glven bound. 

As a curlous appllcatlon of Theorem 4.2, conslder the case again of a mono- 
tone denslty on [0,1] wlth flnlte f (0). Recalllng that  H (  f )<l+log( f (0)), we see 
that  If we take 

1+f (0) r =  
log2(l+f (0)) ’ 

a cholce whlch 1s lndeed lmplementable, then 

E (N, +Nr 1 
< l+l+ 

- log 

log( f (0)) W f  (0))  

log2(l+log( f (0))) + log(l+log(f (o>>>-2l0g(log(l+log(f (0)))) 
- 

(f (0)) 
log(l+log(f (0))) 

as f (O)--too. Thls should be compared wlth the value of E(Nr)=l+log(f  (0)) 
for the black box rejectlon algorlthm followlng Theorem 3.1. 

For densltles that  are also known to be convex, a sllght lmprovement In 
E (N, ) 1s posslble. See exerclse 4.5. 

I 

I 
-- 
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4.5. Bounded monotone densities: inversion-rejection based on 
Newt on-Rap hson iterations. 

In thls sectlon, we msume that f Is monotone on [O,oo) and that f (O)<oo. 
It 1s posslble that f has a large tall. In an attempt to automatlcally balance 
E (N,  ) agalnst E (N,  ), and thus to avold the eternal problem of havlng to And a 
good design constant, we could determine lntervals for sequentlal search based 
upon Newton-Raphson lteratlons started at x o=O. Recall the deflnltlon of the 
hazard rate 

If we try to  solve F (x )=1 for x by Newton-Raphson lteratlons started at xo=O, 
we obtaln a sequence X ~ S X ~ L Z ~ <  . 1 where 

1 = xn+- . 
1-F (2,) 

f (xn 1 h (xn 1 % + I  = xn 3- 

The xn 's need not be stored. Obvlously, storlng them could conslderably speed 
up the algorlthm. 

Inversion-rejection algorithm for bounded densities based upon Newton- 
Rsphson iterations 

Generate a uniform [0,1] random variate u . 
X-O , R + F ( X )  , 2-1 (X) 
REPEAT 

I-R 
Z x*+x+- , R * + F ( X * ) ,  z*-f (X*) 

IF U<R* 
THEN Accept - True 
ELSE R+R* , Z+Z* , X+X* 

UNTIL Accept 
REPEAT 

Generate two independent uniform [0,1] random variates V I  W . 
Y+-x+(x*-x) V , T - WZ (Y is uniformly distributed on [x ,x*)) 
Accept +[T <z*] (optional squeeze step) 
IF NOT Accept THEN Accept --[ T 5 f (Y)] 

UNTIL Accept 
RETURN Y 

One of the dlfferences wlth the algorlthm of the prevlous sectlon 1s that In evr:rY 
1tWatlOn of the lnverslon step, one evaluatlon of both F and f 1s required as 
compared to one evaluatlon of F .  The performance of the algorlthm 1s dealt with 
In Theorem 4.3. 

I 
I 

-- 



342 VII.4.INVERSION-REJECTION METHOD 

Theorem 4.3. 

lnverslon-reJectlon algorlthm glven above, 
Let f be a bounded monotone denslty on [O,oo) wlth mode at 0. For the 

03 

E(N8 1 = E(Nr 1 = (1-F(zi)) 
i =O 

where O = x o ~ x l _ < x z ~  . . * 1s the sequence of numbers defined by 

If f 1s also DHR (has nonlncreaslng hazard rate), then 

1 5 E ( N , )  = E ( N 8 )  5 l + E ( X f  (0)). 

If f 1s also IHR (has nondecreaslng hazard rate), then 

1 5 E(Nr)  = E ( & )  5 - e * 
e -1 

Proof of Theorem 4.3. 

When f 1s DHR, then 

For IHR densltles, the lnequallty should be reversed. Thus, for DHR densltles, 
$1 

J (1-F (a: 1) dx 
O3 XI-1 

03 

xi -xj -1 
(1-F (xi 1) L 1+ 

i =O i=l  

03 

= 1+ J (1-F ( a : ) )  dx h (xi-1) 
1 =12,-1 

03 

5 1+Jf (O)(l-F(s)) da: = l+E(Xf (0)) . 
0 

When f 1s IHR, then 
*I +1 

*I 

- / h ( z )  dz 

1-F (si + 1 )  = ( I -F  ( ~ i  ))e 
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Name 

Halfnormal 

Gamma ( a ) ,  a 2 1  

Exponential 

343 

Density f Hazard rate h E ( N ,  )=E ( N ,  ) 

e 
e -1 
e 

r i a  1 e -1 
e -' 1 

- <- 

I- 
a -I e -2 

e - 

1-F (Xi ) 

Beta (1,a +l), a 20 

Thus, 

1-x a e -1 

- 
1-s 

( a  +l)(l-z)a ( 0 5 2  5 1 )  

00 0 0 .  
C ( l - F ( z i ) )  5 e-' = - e *I 

e -1 i =O i =O 

Truncated extreme value, a >O 

We have thus found an algorlthm wlth a perfect balance between the two 
parts, slnce E (N,  )=E (N,. ). Thls does not mean that the algorlthm 1s optlmal. 
However, In many cases, the performance 1s very good. For example, Its expected 
tlme 1s unlformly bounded over all IHR densltles. Examples of IHR densltles on 
[O,co) are glven ln the table below. 

e *-I  
e' e 1 z-- 

a a e -  
- e  a - I, 

e I, -z4  e - Weibull ( a  ), a 2 1 

Thls 1s not the place to  enter lnto a detalled study of IHR densltles. It sumces to 
state that they are an lmportant famlly In dally statlstlcs (see e.g. Barlow and 
Proschan (1965, 1975),  and Barlow, Marshall and Proschan (1963)). Some of Its 
sallent propertles are covered In exerclse 4.6. Some entrles for (N,  ) In the table 
glven above are expllcltly known. They show that the upper bound of Theorem 
4.3 1s sharp In a strong sense. For example, for the exponentlal denslty, we have 
z, =n , and thus 

e e+' = - 
e -1 

00 00 

E ( N , )  = E ( N , . )  = c ( I - F ( ~ ) )  = 
i =o i =O 

For the beta (1,u +1) denslty mentloned In the table, we can verlfy that 
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and thus, 
a n  

xn = I-(-) (n 20). 
a +1 

Thus, 
00 03 

i =O i =O 

E (N,  = (1-F (xi )) = (1-xi )a+ '  

-1 
03 a i(at-1) a + l  

1-(1--) ) = l  a + 1  
= E(-) 

i =O a +1 

e e 
e -1 e -1 

Thls varles from 1 ( a  =0) to - ( a  Too) wlthout exceedlng - . Thus, once 
agaln, the lnequallty of Theorem 4.3 1s tlght. 

For DHR densltles, the upper bound 1s often very loose, and not as good as 
the performance bounds obtalned for the dynamlc thlnnlng method (sectlon 

VI.2). For example, for the Pareto denslty (where a > O  1s a parame- U 

-1 
(l+x > a  +l 

ter), we have a hazard rate h (x )=- U , and l?(lV6)=[l-(i+~)-'] . Thls 
l+x U 

can be seen as follows: 
1 

(3, +,+I) = (xn +1)(1+-) ; 
U 

( n  20) : l n  
(3, +I) = (l+;) 

-1 00 - i a  
E (N, ) = (I+;) 

i =O 

e 
e -1 

The last expression varles from - ( a  loo) to  2 ( a  =1) and up to 00 as a io. 

4.6. Bounded monotone densities: geometrically increasing interval 
sizes. 

For bounded densltles, we can use a sequentlal search from left to  rlght, 
symrnetrlc to  the method used for unbounded but compact support densltles. 
There are two deslgn parameters: t >O and r >1, and the consecutlve lntervals 
are 

[O,t ) , [ t  ,tr ) , [ t r  ,tr 2) ,... . 
A typlcal cholce 1s t =1 , r =2. General guldellnes follow after the performance 
analysls. Let us begln wlth the algorlthm: 
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Inversion-rejection method for bounded monotone densities based upon geometr- 
ically exploding intervals 

Generate a uniform [0,1] random variate U .  

WHILE u > F ( X * )  DO 
X t o  , X*+t 

X+X* , X* +-rX* 
REPEAT 

Generate two iid uniform [0,1] random variates, V ,  W .  
Y + x + ( x * - x ) V  ( Y  is uniformly distributed on [ X , X * ) )  

RETURN Y 

Theorem 4.4. 
Let f be a bounded monotone denslty, and let t >O and r >1 be constants. 

Deflne 

Then, for the algorlthm glven above, 

Proof of Theorem 4.4. 
We repeatedly use the fact that  tri-’<z <tr If and only lf 

i--151og(;)/log(r > < i  , i >I. NOW, 

tr ’ CQ t tr ’ 
E (N,  ) = J f (5 ) dz + 5 ( i  +1) J f (5 da: = l+ 2 J f (5 
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Also, 

and 

We would llke the algorlthm to perform at a scale-lnvarlant speed. Thls can 
be achleved for t =- . In that case, the upper bounds of Tbeorem 4.4 read: 

f (0) 

where 

1s the scale lnvarlant counterpart of the quantlty H ( f  ) deflned In Theorem 4.1. 
H* (f ) can be consldered as the normallzed logarlthmlc moment for the denslty 
f . For the vast majority of dlstrlbutlons, H*(f )Coo. In fact, one must search 
hard t o  flnd a monotone denslty for whlch H*(f )=m. The tall of the denslty 
must at least of the order of l/(s l o g 2 ( s ) )  as s +oo, such as 1s the case for 

1 f (XI= (x >o) . 
(5  +e )log2(% + e  ) 

I 
I 

I 
-.- 
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Wlth llttle a prlorl lnformatlon, we suggest the cholce 

It Is lnterestlng to derlve a good guldlng formula for r . We start from the lne- 
quallty ' 

H*(f 1 E (N,  )+E (N , )  5 3+r + 
log(r ) ' 

whlch 1s mlnlmal for the unlque solutlon r >1 for whlch r log2(?- )=H* (f ). By 
functlonal lteratlon started at r =H* (f  ), we obtaln the crude estlmate 

H*(f 1 
log2(H* (f >> r =  

For thls cholce, we have as H*(f )+m, 

Example 4.3. Moment known. 
A loose upper bound for H* (f  ) 1s afforded by Jensen's lnequallty: 

co 

H* (f 5 J W l + Z f  (o))f (Z> dx 5 W l + E  (Xf (0))) 
0 

where X 1s a random varlable with density f . Thus, the expected tlme of the 
algorlthm grows at worst as the logarlthm of the flrst moment of the dlstrlbutlon. 
For example, for the beta ( l , a + l )  denslty of Example 4.1, thls upper bound Is 

a +1 
a+2  - log(i+-) < log(2) for all a >O. Thls 1s an example of a famlly for whlch the 

flrst moment, hence H*( f  ), 1s unlformly bounded. From thls, 

E ( N , )  5 1+r . 

The ad hoc cholce r =2 makes both upper bounds equal to 3. 
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4.7. Lipschitz densities on [o,oo). 

The lnverslon-reJectlon method can also be used for Llpschltz densltles f on 
[ o , ~ ) .  This class 1s smaller than the class of bounded densltles, but very large 
compared to  the class of monotone densltles. The black box method of sectlon 3 
for thls class requlred knowledge of a moment of the dlstrlbutlon. In contrast, the 
method presented here works for all densltles f €Lip  1( C ) where only C must be 
glven beforehand. The moments of the dlstrlbutlon need not even exlst. If the 
posltlve half of the real llne 1s partltloned by 

0=s0<x1<x2< * * , 

where the last lnequallty 1s based upon Theorem 3.5. The areas under the respec- 
tive domlnatlng curves are 

and 

n =o 

where A, = x, The value of E (N,  ) depends only upon the partltlon, and 
not upon the lnequalltles used In the reJectlon step, and plays no role when the 
lnequalltles are compared. Generally speaklng, the second inequality is better 
because I t  uses more Information (the value of F 1s used). Conslder the flrst lne- 
quallty. To guarantee that E (N,  ) be flnlte, for the vast majorlty of Lip densl- 
tles we need to ask that 

E A n 2 < w .  
03 

n =o 

But, slnce we requlre a valld partltlon of R , we must also have 
03 

E A ,  = w .  
n =o 

In partlcular, we cannot afford to  take A,=b>O for all n .  Conslder now A,, 
satlsfylng the condltlons stated above. When A, -n-' , then I t  1s necessary that 

a €(-,l]. Thus, the lntervals shrlnk rapldly to  0. Consider for example 1 
2 
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For thls cholce, the Intervals shrlnk so rapldly that we spend too much time 
searchlng unless f has a very small tall. In partlcular, 

03 n 
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E ( N s ) =  P ( X L  C A i )  
n =o a =o 

5 5 P ( X  2 c log(n + 2 ) )  
n =O 

X 03 - 
= C P ( e  "n+2)  

5 E ( e C ) .  

n =o 
X 

A slmllar lower bound for E (N, ) -xlst-, so that we conc,Jde that E 
and only If the moment generating functlon at - Is flnlte, 1.e. 1 

C 
X - 1 m ( - )  = E ( e  c ,  < 0 0 .  

C 

In other words, f must have a sub-exponential tail for good expected tlme. 
Thus, lnstead of analyzlng the first lnequallty further, we concentrate on the 
second lnequallty. 

The algorlthm based upon the second lnequallty can be summarlzed as fol- 
lows: 

Inversion-rejection algorithm for Lipschitz densities 

Generate a uniform [O,l] random variate U. 
X+O , R +-F(X) 
REPEAT 

X*+ Next ( X ) ,  R*+F(X*)  (The function Next computes the next value in the 
partition.) 
IF U<R* 

THEN Accept + True 
ELSE R+R* , X+X* 

UNTIL Accept 
REPEAT 

Generate two independent uniform [0,1] random variates v , w . 
Y + X + V ( X * - X )  ( Y  is uniformly distributed on [ X , X * ) .  

UNTIL w m 5 f  ( Y )  
RETURN Y 
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There are three partltlonlng schemes that stand out as belng elther lmportant or 
practlcal. These are defined as follows: 
A. 
B. x , + ~  = t r n  for some t >O,r > 1  , x 1  = t (note that z,+~ = TZ, for all 

c. $,+I = x,+ d T  (thls cholce provldes a balance between E ( N , )  

Schemes A and B requlre addltlonal deslgn constants, whereas scheme C 1s com- 
pletely automatlc. Whlch scheme 1s actually preferable depends upon varlous fac- 
tors, foremost among these the size of the tall of the dlstrlbutlon. By lmposlng 
condltlons on the tall, we can derlve upper bounds for E (N,  ) and E (N,  ). These 
are collected In Theorem 4.5: 

x, = n 6 for some 6>0 (thus, x,+l-x, =6). 

n 21). The lntervals grow exponentlally fast .  

and E (N,. )). 



VII.4.INVERSION-REJECTION METHOD 351 

Theorem 4.5. 

p -th moment exlsts, I t  1s denoted by p p  . 
Let f € L i p  ,(C) be a denslty on [O,oo). Let p >1 be a constant. When the 

For scheme A, 

. 

1 and when 6=- 67' 
1 1 

For scheme B, 

For scheme C, 

At the same tlme, even If p2=00, the followlng lower bound 1s valld: 
co 
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Proof of Theorem 4.5. 

In thls proof, X denotes a random varlate wlth density f . Rewrlte E ( N , )  
as follows: 

Thls can be obtalned by an lnterchange of 
by Jensen's lnequallty and trlvlal bounds, 

J 

the sum and the Integral. But then, 

M 

Next, 

so that  by Chebyshev's lnequallty, 

. By a simple argument, we see that 

Comblnlng thls shows that  

1 - 
p (P2p > 2 p  

= 2+- 
p - 1  6 * 

Thls brlngs us to the lower bounds for scheme A. We have, by the Cauchy- 
Schwarz lnequallty, 

1 , 
I 
~ , 
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03 

03 

1 X > -jxJ (x)max(l,-) dx 

> -  

- 6 2  5 

1 P 2  

s - JII;max(19--) 

Also, 

Pl 
s 2 max(1,-). 

For scheme B, we have 
03 

E ( N , ) =  I+ ( l - F ( t r n ) )  
n =O 

m o o  
=1+E J f  ( x ) d x  

n =Otrn 

Also, 

E ( N r ) =  5 &?? 
n =O 

t ( r - l y  
n =O t p r n p  

353 
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Flnally, we conslder scheme C. Conslder the graph of l - d m .  Construct for 
glven x ,  the trlangle wlth top on the glven curve, and base [ x ,  ,x f l  +J at helght 1. 

. The trlangle lles completely above the glven curve because Its area 1s 

the slope of the hypothenusa 1s &?, whlch 1s at least as steep as the derlvatlve 
of 1-m at any polnt. To see thls, note that the latter derlvatlve at x 1s 

1-F ( x f l )  
m 

f ( 5 )  < J 2 C ( l - F ( X  1) = fi 
2 m -  2 G i q r )  

Thus, the sums of the areas of the trlangles 1s not greater than the lntegral 

J d m  d x  . But thls sum 1s 
00 

0 

00 1--F(Xf l )  E ( & )  E ( N 8 )  - - - - 
f l  E m  =O m m *  

00 

Also, twlce the area of the trlangles 1s at least equal to Jm dx . The 

bounds In terms of the varlous moments mentloned are obtalned wlthout further 
trouble. Flrst, by Chebyshev’s lnequallty, 

0 

00 00 1 1 

Also, by the Cauchy-Schwarz lnequallty, 
10300 

We observe that n x  1s a scale-lnvarlant quantlty. Thus, one upper bound 
for scheme A (cholce 6=- ) and the upper bound for scheme C are scale- 

lnvarlant: they depend upon the shape of the denslty only. Scheme C 1s attrac- 
tlve because no deslgn constants have to  be chosen at any tlme. In scheme A for 
example, the cholce of 6 1s crltlcal. The geometrlcally lncreaslng lnterval shes of 
scheme B seem t o  offer llttle advantage over the other methods, because E (N,  ) 1s 
relatlvely large. 

m 
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4.8. Exercises. 
1. 

2. 

3. 

4. 

5. 

355 

Obtaln an upper bound for P ( N ,  2 j )  In terms of J’ when equl-spaced lnter- 
vals are used for bounded densltles on [O,m) as In Example 4.1. Assume flrst 
that the T -th moment p,  1s flnlte. Assume next that E (e tX)=m ( t  )coo for 
some t >O. The lnterval wldth 6 does not depend upon j .  Check that the 
main term In the upper bound 1s scale-lnvarlant. 
Prove lnequallty D of Theorem 4.1. 

Give an example of a monotone denslty on [0,1], unbounded at 0, wlth 

Inequalltles A through C In Theorem 4.1 are best posslble: they can be 
attalned for some classes of monotone densltles on [0,1]. Descrlbe some 
classes of densltles for whlch we have equallty. 
When f 1s a monotone convex denslty on [0,1], then the lnverslon-rejectlon 
algorlthm based on shrlnklng intervals glven In the text can be adapted so 
that reJectlon 1s used wlth a trapezoldal domlnatlng curve Jolnlng [X,f (I)] 
and [TX ,  f (rx)] where r >1 1s the shrlnkage parameter used ln the orlglnal 
algorlthm. Such a change would leave N, the same. It reduces E ( N ,  ) how- 
ever. Formally, the algorlthm can be wrltten as follows: 

H(f  ><m. 

Inversion-rejection algorithm with intervals shrinking at a geometrical 
rate 

Generate a uniform [0,1] random variate u .  
X t l  
REPEAT 

X X t -  
r 

Z+f (X) ,Z*+f ( r X )  
UNTIL u z F ( X )  

REPEAT 
Generate three independent uniform [0,1] random variates, u , v , W I 

) 
z+z* R t m i n (  U , V- z -z* 

Y + X ( l + ( r  -1)R ) ( Y  has the given trapezoidal density) 

Accept +[T <z*] (optional squeeze step) 
IF NOT Accept THEN Accept -[ W < f (Y)] 
T +- W (2 +(Z* -2 )R ) 

UNTIL Accept 
RETURN Y 

1 
2 

Prove that E (Nr )<-(l+r ). In other words, for large values of T , thls 
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corresponds to  an lmprovement of the order of 50%. 

A. 
6. IHR densities. Prove the followlng statements: 

If X has an MR denslty on [ O m ) ,  then Xf (0) 1s stochastlcally smaller 
than an exponentlal random varlate, Le. for all 5 )o, 
P ( X f  (O)>s)Se-’ .  Conclude that for r >0, E ( X r ) S  r ( r  +I) 

f ( O Y  
B. For T >0, E (x‘ )sr(r +l)Er (x) (Barlow, Marshall and Proschan, 

C. 

D. 

1963). 
The convolutlon of two IHR densltles 1s agaln IHR. 
Let Y , Z  be lndependent IHFt random varlables wlth hazard rates h y  
and h z .  Then, lf h y + ~  1s the hazard rate of thelr sum, 

E. Construct an IHR denslty whlch 1s contlnuous, unbounded, and has 

7. Show how to  choose r and t In the lnverslon-rejectlon algorlthm wfth 
geometrlcally explodlng lntervals so as to  obtaln performance that 1s sub- 
logarlthmlc In the flrst moment of the dlstrlbutlon In the followlng sense: 

b + Z  Lmln(hy thz >. 
lnflnltely many peaks. 

where p = B ( X )  , C 1s some unlversal constant, and X 1s a random varlable 
wlth denslty f . 

8. Bounded convex monotone densities. Glve an algorlthm analogous to 
that studled ln Theorem 4.4 for thls class of densltles: Its sole dlfference 1s 
that the rejectlon step uses a trapezoldal domlnatlng curve. For thls algc- 
rlthm, In the notatlon of Theorem 4.4, prove the lnequallty 

C 
9. Prove that If A,, = - In the algorlthm for Llpschltz densltles, then 

E (N,  )<m If and only If E ( e  
10. Suggest good cholces for t and r In scheme B of Theorem 4.5. These cholces 

should preferably mlnlmlze E (N ,  )+E (Nr ), or the upper bound for thls sum 
given in the theorem. The resultlng upper bound should be scale-lnvarlant. 

11. Conslder a denslty f on [ O m )  whlch 1s In L@,(C) for some a€(O,l]. Uslng 
the lnequallty of Theorem 3.5 for such densltles, glve an algorlthm generallz- 
lng scheme C of Theorem 4.5 for L i p ,  densltles. Make sure that 
E (N ,  )=E (N,. ) and glve an upper bound for E (N,  ) whlch generallzes the 
upper bound of Theorem 4.5. 

12. The lower bound for scheme C In Theorem 4.5 shows that when p2=m, 
then E(N,)=m.  Thls 1s a nearly optlmal result, In that for most densltles 
wlth Anlte second moment, E(N,)<oo. For example, If p2+(<m for some 

n + 1  - 
)<oo. 
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c>O, then E ( N ,  )<m. Flnd densltles for whlch pz<oo, yet E (N, )=m. 


