Chapter Seven
UNIVERSAL METHODS

1. BLACK BOX PHILOSOPHY.

In the next two chapters we will apply the tools of the previous chapters In
the deslgn of algorithms that are applicable to large famllles of distributions.
Descrlbed In terms of a common property, such as the famlly of all unimodal den-
sltles with mode at O, these familles are generally speaking nonparametric in
nature. A method that Is applicable to such a large family is called a universal
method. For example, the relectlon method can be used for all bounded densities
on [0,1], and Is thus a unlversal method. But to actually apply the relectlon
method correctly and efliclently would require knowledge of the supremum of the
density. This value cannot be estimated In a finlte amount of time unless we
have more Information about the density in question, usually in the form of an
expliclt analytlc deflnitlon. Unlversal methods which do not require anything
beyond what Is glven In the definition of the famlly are called black box methods.

Conslder for example all discrete distrlbutions on the posltive integers.
Assume only that for each ¢ we can evaluate p; (conslder this evaluatlon as
belng performed by a black box). Then the sequentlal inversion method (section
II1.2) can be used to generate a random varlate with this distributlon, and can
thus be called a black box method for this family. The inverslon method for dis-
trlbutions with a continuous distribution function is not a black box method
because finite tlme generation Is only posslible In speclal cases (e.g., the distribu-
tlon function is plecewlse linear).

The larger the famlily for which we design a black box method, the less we
should expect from the algorithm timewlse: a case In polnt is the sequential inver-
slon method for dlscrete random varlates. The undenlable advantage of having a
few black box methods In one’s computer library is that one can always fall back
on these when everything else falls. Comparative timings with algorlthms spe-
clally designed for particular distributions are not falr.

In chapters IX and X we will malnly be concerned with fast algorithms for
parametric familles that are widely used by the statistical community. In this
chapter too, we will be concerned with speed, but 1t Is by no means the driving
force. Because continuous distributions are more difficult to handle in general, we
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will only focus on famlilles with densltles. In sectlon 2, we present a case study for
the class of log-concave densities, to wet the appetite. Since the whole story in
black box methods 1s told in terms of Inequallties when the rejection method s
involved, 1t Is Important to show how standard probabllity theoretical Inequalitles
can ald 1n the design of black box algorithms. This Is done In section 3. In sectlon
4, the Inverslon-reJection principle Is presented, which comblnes the sequentlal
Inverston method for discrete random varlates with the rejectlon method. It Is
demonstrated there that thls method can be used for the generatlon of random
varlables with a unimodal or monotone density.

2. LOG-CONCAVE DENSITIES.

2.1. Definition.

A density f on R ¢ is called log-concave when logf Is concave-on Its sup-
port. In this sectlon we will obtaln unlversal methods for thls class of denslities

when d ==1. The class of densltles I1s very Important In statistles. A partial list of
member densitles Is glven In the table below.

Name of density ] Density Parameter(s)
22
1 =
Normal —imce 2
Vvarm
G 2’ (>0 >1
amma (a —_— (= a
(@) I'(a)
Weibull (a) ez e’ (z>0) a>1
) xa—l(l_x )b-—l
Beta (a,b it (02 <1 a,b>1
(a.b) Blap) _ °0s7 =Y =
e” I z | ¢
Exponential power (a ) e e>1
2r(1+-=)
Perks (a) S S— a>-2
ef+e*+a
Logistic same as above, a =2
Hyperbolic secant same as above, a =0
F
Extreme value (k) ' -Z-I;We"" ~ke k > 1,integer
WL
Generalized inverse gaussian cx®le * (z20) a>1,b,b*x>0

Important individual members of -this family also Include the uniform den-
sty (as a speclal case of the beta famlly), and the exponentlal density (as a spe-
clal case of the gamma famlily). For studies on the less known members, see for
example Perks (1932) (for the Perks densitles), Talacko (19568) (for the hyperbollc
secant density), Gumbel (1958) (for the extreme value distributlons) and Jorgen-
sen (1982) (for the generallzed Inverse gausslan densltles).

The famlly of log-concave densitles on R 1s also Important to the mathema_t-
Ical statisticlan because of a few key propertles Involving closedness under certaln
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operations: for example, the class Is closed under convolutions (Ibragimov (1958),
Lekkerkerker (1953)).

The algorithms of this sectlon are based upon rejection. They are of the
black box type for all log-concave densltles with mode at O (note that all log-
concave densitles are bounded and have a mode, that is, a polnt z such that f
Is nonincreasing on [z ,00) and nondecreasing on (~00,z]). Thus, the mode must
be given to us beforehand. Because of thls, we will malnly concentrate on the
class LC,, the class of all log-concave densitles with a mode at 0 and [ (0)==1.
The restriction f (0)=1 1s not cruclal: since f (0) can be computed at run-time,
we can always rescale the axls after having computed. f (O)'so that the value of
f (0) after rescallng 1s 1. We defilne LC as the class of all log-concave densltles
with a mode at O.

The bottom llne of this sectlon s that there Is a reJection-based black box
method for LC, which takes expected time unlformly bouilded over this class if
the computation of f at any polnt and for any f takes one unit of time. The
algorithm can be implemented In about ten lilnes of FORTRAN or PASCAL
code. The fundamental Inequallty needed to achleve this Is deVeloped In the next
sub-sectlon. All of the results In this section were first published in Devroye
(1984).

2.2. Inequalities for log-concave densities.

Theorem 2.1.
Assume that f Is a log-concave denslty on [0,00) with a mode at 0, and that
f (0)=1. Then f (z)<g(z) where
1 (0<z<1)
the unlque solutlon ¢ <1 of t=¢~20t) (5 >1)"

y'($)={

The lnequality cannot be Improved because ¢ Is the supremum of all densltles in
the famlly.
Furthermore, for any log-concave density f on [0,00) with mode at O,
o0

[f <e®® (3>0).
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Proof of Theorem 21

We need only conslder the case z >1. The density f In the glven class
which ylelds the maximal value of f (z) when 7 >1 Is fixed Is glven by

-au  (0<u<z)

logf (u) = {—oo (z<u)

for some a >0. Thus, [ (u)=¢™ % ,0<u <z . Here a s chosen for the sake of
normallizatlon. We must have

Replace 1-a by ¢.

The second part of the theorem follows by a slmllar-geometrical argument.
First ix £ >0. Then notlce that the tall probability beyond z s maximal for the
exponentlal -dénsity, which because of normallzatlon must be of the form
f (0)e™¥/© 4 >0. The tall probability 1s ¢ %/ ©, i

Theorem 2.2.

"The function ¢ of Theorem 2.1 can be bounded by'two sequences of func-
tlons y, (z ),2, (z) for z >1, where

(1) 0=242)<2,(2)< - <gla)
M) ¢(2)< - SYi@)Syola)==
() lm y, (z)=g(z)
(v) m 2, (2)=g (2

(V) Yoy (a)=e 20D,
(V) 2, 4y(z)=e 2T ED

Proof of Theorem 2.2.

Fix z >1. Consider the functlons f ,(u)=u and f ,(u)=e*0"%) for
0<u <1. We have [ (D)=f ,(1)=1 , flo()=z >1=f"',(1),
f1(0)=ze™* <1=[",(0). Also, f , s convex and Increases from e¢~* at u =0 to
1 at uw==1. Thus, there exlsts preclisely one solution In (0,1) for the equatlon
[ 1(u)=/f ,(u). This solutlon can be obtalned by ordinary functlonal Iteration: If
one starts with zy(z )==0, and uses z, ,,(z)=/[ 5(2, (7)), then the unlque solutlon
Is approached from below In a monotone manner. If we start with y,(z ) at least
equal to the value of the solution, then the functlonal Iteration
Yn+1(x)=/ o(y, (z)) can be used to approach the solutlon from above In a
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1
monotone way. Since [ (z )S—; for all monotone densltles f on [0,00), we have

g(z )_<'_l-. and thus, we can take yq(z )=-L. |
z z

When [ Is a log-concave density on [m ,0c0) with mode at m , then

J(m+ 7 )
(m) < min(L,e*)  (z>0).
[ (m) - -

The area under the bounding curve Is exactly 2. The lnequality applles to all log-
concave densltles with mode at m (In which case the conditlon z >0 must be
dropped and 1-z Is replaced by 1~ | z | ). But unfortunately, the area under the
domlinating curve becomes 4. The two features that make the Inequality useful
for us are

(1) The fact that the area under the curve does not depend upon f. (This
glves us a uniform guarantee about 1ts performance. )

(1) The fact that the top curve ltself does not depend upon f . (This Is a neces-
sary condlition for a true black box method.)

2.3. A black box algorithm. .
Let us start with the relectlon algorithm based upon the lnequality

f (m+ )
) < min(1e™*)  (z>0)
7 (m)

valld for log-concave densities on {m ,00) with mode at m:
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Rejection algorithm for log-concave densities

[SET-UP](can be omitted)
c—f(m)
[GENERATOR]
REPEAT
Generate U uniformly on [0,2] and V' uniformly on [0,1].
IF U1
THEN (X ,Z)~—(U,V)
ELSE (X,Z )«(1-log(U ~1),V(U-1))

X<—m+—)—{
¢

unt 7 < L&)

RETURN X

The valldity of this algorithm is quickly verlfled: Just note that the random vec-
tor (X ,Z) generated In the middle sectlon of the algorithm Is uniformly distri-
buted under the curve min(1,e"%) (z >0) . Because of the excellent properties
of the algorithm, 1t 1s worth polntilng out how we can proceed when f Is log-
concave with support on both sldes of the mode m . It suffices to add a random
sign to X Jjust after (X ,Z) Is generated. We should note here that we pay rather
heavlly for the presence of two talls because the rejection constant becomes 4. A
qulck fix-up Is not posslble because of the fact that the sum of two log-concave
functions Is not necessarlly log-concave. Thus, we cannot "add” the left portlon
of f to the right portlon sultably mirrored and apply the glven algorithm to the
sum. However, when f Is symmetrlc about the mode m, 1t is possible to keep

the relectlon constant at 2 by replaclng the statement X «—m +-— Dby

Xe—m +% where S 1s a random sign.
c

Let us conclude this sectlon of algorithms with an exponential version of the
previous method which should be fast when exponentlal random varlates can be
‘generated cheaply and If the computation of log(f ) can be done efficlently (In
most cases, log(f ) can be computed faster than f ).
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Rejection method for log-concave densities. Exponential version

[SET-UP])(can be omitted)
c+—f (m), r+loge
[GENERATOR)]
REPEAT

Generate U uniformly on [0,2]. Generate an exponential random variate E .-
IFUL1
THEN (X ,Z)—(U ~E)
ELSE (X,Z )~—(1+E#*,~E-E*) (E+ is a new exponential random variate)
CASE
X

J log-concave on [m ,00): X ~m 4+~
¢

J log-concave on (~o00,00):
Generate a random sign S .
' CASE

/ symmetric: X —m +.§2.)_(
c

J/ not known to be symmetric: X «m -F%)-(-
UNTIL Z <logf (X )~-r
RETURN X

One of the practical stumbling blocks is that often most of the time spent In
the computation of f (X ) Is spent computing a complicated normallzation factor.
When [ Is glven analytlcally, 1t can be sldestepped by setting up a subprogram
for the computation of the ratto f (z)/f (m) slnce this Is all that Is needed In
the algorithms. For example, for the generallzed Inverse gaussian distribution, the
normallzation constant has several factors Including the value of the Bessel func-
tlon of the third kind. The factors cancel out in f (x)/f (m ). Note however that
we cannot entirely lgnore the Issue slnce f (m ) Is needed In the computation of
X . Because m Is fixed, we call this a set-up step.
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2.4. The optimal rejection algorithm.

In this section, we assume that f 1s In LC,,. The optimal relectlon algo-
rithm uses the best possible uniform boundlng curve, that Is, the function g of
Theorem 2.1. The problem 1s that ¢ 1s only deflned implicitly. Nevertheless, 1t is
possible to generate random varlates with denslty ¢ / f g without great difficulty:

Theorem 2.3.

Let E ,E,,U,D be Independent random varlables with the following distrl-
butlons: E,,E, are exponentially distributed, U Is uniformly distributed on [0,1]
and D Is Integer-valued with P (D =n )=6/(7?n%), n >1. Then

(E,+E,)/D

X.Y) = (—G

~(E+Eq)/D )

Is uniformly distributed In {(z,y):z>0,0<y <g(z)} where g Is deflned In

Theorem 2:.1. In particular, X has denslty ¢ /fg and Y Is distributed as Vg (X)
where V 1s a uniform [0,1] random variable Independent of X .

Proof of Theorem 2.3.

Flip the axes around, and observe that the desired Y should have density
proportional to —log(y )/(1~y ), 0<y <1, and that X should be distributed as
U(-log(Y)/(1-Y)) where U Is Independent of Y. By the transformatlion
y=e?, Y =e"%, we see that Z has denslty proportional to

[l

o0
E ze ~n+1)z
l—e‘-z n =0

M8

2
= 5 (Z (0% ) (220),

n==1

i

le.,, Z s distributed as (E21+E'2)/D (since E,+E, has denslity ze™* , 2 >0).
Thus, the couple (UZ /(1-€~ )),c'Z) has the correct unlform distribution. [Jj

In the proof of Theorem 2.3, we have also shown that

2
m
== — U 1.6433.
Jo =

This s about 18% better than for the algorithms of the previous sectlon. The
algorithm based upon Theorem 2.3 Is as follows: '
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Optimal rejection algorithm for log-concave densities

INOTE: f €LC,,]

REPEAT
Generate a uniform (0,1} random variate U .
Generate iid exponential random variates E | ,E,. Set E«—FE |+E,.
Generate a discrete random variate D with P (D =n)=6/(r"n?%, n>1.

E
b
Uz
- -Z — ——
Y—e™ , X Yy

UNTIL Y <[ (X)
RETURN X

For the generation of D, we could use yet another relectlon method such as:

REPEAT
Generate iid uniform [0,1] random variates U,V .

FU<yi
-2

THEN D «1

ELSE D « [1/(2-U))]
UNTIL DV >1
RETURN D

12

If D 1s generated as suggested, we have a rejectlon constant of — ‘When used
T

In the former algorithm, this will offset the 189 galn so palnstakingly obtalned.

Since the D generator does not vary with f, 1t should preferably be imple-
mented based upon a combination of the allas method and a rejection method for
the tall of the distribution.
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2.5. The mirror principle.

Conslder now a normalized log-concave f with two talls, m =0, and
f (0)==1. In this case, the original algorlthms have a reJectlon constant equal to
4. However, there are two observatlons of Richard Brent which will considerably
Improve the performance. The first observation Is that If p =F (m ) Is known (F
Is the distributlon functlon), then the rejectlon constant can be reduced to 2
agaln. Thls Is based upon the following Inequallty:

Theorem 2.4.

If f 1s a log-concave denslty with mode m ==0 and f (0)=1, then, writing p
tor F (0), we have

=1
f (@) < mine ) (230)
7= A=l
mln(l,e1 Py (z<0)

The area under the bounding curve Is 2.

Proof of Theorem 2.4,

Note that —[—@-l Is a log-concave density on (0,00), and-that f () Is a

log-concave denslty on (-00,0). Since f (z (1-p)) Is log-concave on (0,00), we have
f(z(1-p)) < min(1,e'*) (2 >0).

The lnequality and the statement about the area follow without further work. .

The detalls of the rejection algorithm based upon Theorem 2.4 are left as an
exerclse. Brent's second observation applies to the case that F (m ) Is not avall-
able. The expected number of iterations In the rejection algorithm can be reduced

to between 2.84 and 2.75 at the expense of an increased number of computatlons
of f.
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Theorem 2.5.

Let f be a log-concave density on R with mode at 0 and f (0)=1. Then,
for z >0,

- -

f@Hf(-z)<g(x)= sup (min(l,e '7?)+min(l,e 7))
p €(0,1)

2 (0<z<i)
2
2 1
Tr i
= |1+e (E-<:z: <1)
el (z21)
Furthermore,
5 1% e 5, 17e™
fg = ;+:f_e._._2. dv < —+—f f+ du =2 2.8491 .
. o (1+_§_) o 1+u

Defilne another function g* where g*==¢g except on (%,1), where g# Is llnear

with values g*(-;-)=2,g*(1)=1. Then ¢g* >¢ and fg*=—1-;11—.

Proof of Theorem 2.5.

Let us write once agaln p =F (0). The first lnequality follows directly from
Theorem 2.4. We wlll first rewrite ¢ as sup A, (z) where h, (z) Is defined by
0<p S-;-

2 (z<p)

z

(O

1+e 7 (pLz<i-p)

e P4+e P (1-p <z <)

To prove the maln statement of Theorem 2.5, we first show that ¢ Is at least
equal to the right-hand-side of the maln equation. For =z S-—;—, we have

h 1/5(z )=2. For %Sx <1, observe that h,_, (z )=14¢2"/("%), Finally, for z >1,

we have hy(z)=e 1 We now show that g 1s at most equal to the right-hand-
side of the maln equatlion. To do thls, decompose h, as h,;+h,,+h,; Where
hP 1=hp I[O,p B hp 2=hp I(p 1-p ) hp 3=hp I[l-—p ,00)° Clearly, hp 1_<__ g for all

p S_;-,x 2>0. Since (p,1-p )C[0,1], we have h,,<g for all p S-E—,x >0. It suffices

r4
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to show that h,;<e =% for all z >1,p S%. This follows If for all such p,

because this would imply, for z 21,
1 7 1z

e((e P) +(e '?))

Putting u =}:l)-, we have
4

The last function has equal maxima at v =0 and u oo, and 2 minimum at u ==1, _

The maximal value Is 1 and the minimal value is —2-. This concludes the proof of
e

the maln equation In the theorem.

Next, [¢ 1s
5. o 1o 5 17 -2 |
U
—+e?fe Y dx = —4+—[(1+—) e~ du
2 { 2 4 { (1+3)
2
where we used the transformation u =-—1———-2. The rest follows easlly. For exam-

1-2
ple, a formula for the exponentlal Integral is used at one polnt (Abramowltz and
Stegun, 1970, p. 231). The last statement of the theorem s a direct consequence

1
of the fact that A, Is convex on [-5-,1]. |

‘We conclude this sectlon by mentioning the algorithm derlved from Theorem
2.5. It requires on the average 2.75 lteratlons and 5.5 evaluations of f per ran-
dom varlate. It should be used only when the number of uniform random varlates
per generated random varlate must be kept reasonable.
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Rejection method for log-concave densities on the real line

[NOTE]

We assume that f has a mode at 0 and that f (0)=1. Otherwise, use a linear transforma-
tion to enforce this condition.

[GENERATOR]
REPEAT
Generate iid uniform [0,1] random variates U,V , W,

FU<L
11

THEN (X,Y)«—(-—-‘;—V—,2V)

ELSE IF U <-——
11

THEN

Generate a uniform [0,1} random variate W+,
(X, Y y(5+min(W 2W+), V (1+201-X ))

ELSE (X ,Y )—(1-log(W),VW)
UNTIL Y <[ (X)+f (-X)
Generate a uniform [0,1] random variate Z (this can be done by reuse of the unused por-
tion of U).
[ &X)

F 2T ® X

THEN RETURN X

ELSE RETURN -X

2.6. Non-universal rejection methods.

The unlversal rejectlon algorithm developed In the previous sectlons Is
suboptimal for Indlvidual log-concave densities In the following sense: one can
find domlnating curves which conslst of a constant function around the mode and
two exponentlal talls and have at the same time a smaller Integral than that of
the domlnating curves for the unlversal method. The lmprovements are indlvl-
dual, because for each density we requlre additlonal Information about the den-
sity not normally avallable In the black box model. The resulting algorithms are
comparable with the ratlo-of-uniforms method, where the exponentlal talls are
replaced with quadratic talls. Slnce log-concave densltles have sub-exponentlal
talls, the it will often be much better than with the ratlo-of-uniforms method.
More importantly, we can glve a very elegant reclpe for finding the optimal
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domlnating curve which 1s valld for all log-concave densltles.

By log-concavity, we know that A = log(f ) can be majorlzed by the derlva-
tive of h at any polnt (the derlvative belng consldered as a llne). Thls
corresponds to flttlng an exponentlal curve over f . The problem we have is that
of finding polnts m +a >m and m-b <m (where m 1s the mode of f ) such
that the area under

g(z)=min(f (m), [ (m+a)eEAmFTaDim+e)
£ (m=b)eE(m-bDk(m-b)y

s minlmal. We will formally allow A'(m +4a )=-0c0 and h’(m —-b )=+0c0. In those
cases, the corresponding terms In the definitlon of ¢ are elther oo or 0. This dis-
tinction Is Important for compact support densltles where ¢ or b polnt at the
extremal polnt In the support of f . We can offer the followlng general princlple
for inding ¢ and b.

Theorem 2.6.

Let f be decomposed as f,+f, where f,, f, refer to the parts of of f to
the right and left of the mode respectively. The Inverses of f , and f; are well-
deflned when evaluated at a polnt strictly between O and f (m ). (In case of a
continuous f,, there Is no problem. If f, has a discontlnulty at y, then we
know that f (z)>0 for z <y and f,(z)==0 for z >y . In that case, the Inverse,
If necessary, Is forced to be y.)

The area under ¢ !s minimal when
mta = f, (),

- m
m-b = ()

The minlimal area is glven by

f(m)a+b).

e
Furthermore, the minimal area does not exceed , and can be as small as

1. When In ¢ we use values of m +a¢ and m —b further away from the mode than
those glven above, the area under ¢ Is bounded from above by f (m )(a +b).

Proof of Theorem 2.8.

We wlill prove the theorem for a monotone density f on [m ,o00) only. The
full theorem then follows by a simple comblnatlon of antlsymmetric results. We
begin thus wlith the lnequallty

gx)=min(f (m), [ (m+a )e(x—(m+a))h/(m+a)) '
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The cross-over point between the top curves 1s at a polnt z between m and
m+a:

N [ (m)
W(m+a) ] (m+a)

The area under the curve ¢ to the right of m 1Is given by

2 = m-+a

log( ) -

f(m)e=m)+[ [ (m+a)eEWm+e) gy

= f (m)z-m )-}-_%Lw‘_.)_e(z'—(m +a)h'(m +a)

~h'(m +a)
1
= f(m)(z—m-m)
— 1 J— J—
= f (m)(a+——-———h,(m+a)(h(m) h(m+a)-1)).

The derivatlve of thls expresslon with respect to a Is
f (m)H)B"(m +a )Y 14+h(m 4+a)-h (m))
h¥m+a)

which 1s zero for h(m +a)=h(m)-1, le. [ (m +a)==m——)-. Note also that
e

h'(m +a)<0, and thus that the derlvative Is nonpositlve for values of m +a
smaller than thls threshold value, and that 1t 1s nonnegatlve for larger values of
m +a, so that we do Indeed have a global minlmum for the area under ¢g. At the
suggested value of m +a, the area Is glven by af (m ). For m +a larger than the
suggested value, the area Is bounded from above by af (m ), since h/(m +a )<0,
h (m)-h(m +4a)-12>0.

To obtaln a distribution-free upper bound for the area af (m ) when a Is
optimally chosen, we use the Inequality of Theorem 2.1. If we use the upper

1
bound on f glven there, and set It equal to —, then the solutlon s a number
e

greater than af (m ). But that solution Is

of (m)<——. B

€e-1

Thus, for the optimal a,

Theorem 2.6 1s Important. If a lot Is known about the density in question,
good rejection algorlthms can be obtained. Several examples will be given below.
If we want to bound f from above by a comblnatlon of pleces of exponential
functlons, then the area can be reduced even further although, as we will see
from the examples given below, the reduction Is often hardly worth the extra
effort since the rejection constant is already good to begin with.

The formal algorithm is as follows:
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Rejection with two exponential tails touching at m-b and m+a

{SET-UP]

m is the mode; a ,b >0 are assumed given.’

A +—=1/h"(m +a )\ —1/k' (m =b ) (where k =log(f )).

fme—tf (m)

ar+—a +)‘,log(i—(—-—'fn-’_—a—)-), bt b+ log(-‘—f-gl:—b—)-). (m+a* and m-b+ are the thres-
holdss) " "

Compute the mixture probabilities; s+X\ +X +a*+b*, p o—)\,/a,. Pr+A. /8,
Pm—(a*+b*)/s.

[GENERATOR]

REPEAT
Generate iid uniform [0,1] random vartates U, V.
IF U <p,, THEN

Generate a uniform [0,1] random variate Y (which can be done as
YU/pm).

Xem-b*+Y (a*+b+)
Accept —(Vf, < f (X))
ELSE IF p,, <U <p,, +p, THEN
Generate an exponential random variate E (which can be done as

U"' m
E ——log(—2")).

X+—m+a*+X\ E
Accept «—[V[ e

r

- 2N
(XAm +a))/ '<f (X)) (which is equivalent to Accept

) U-p,,
—{Vf m e™F S f (X)), oF to Accept —[Vf  —22-< § (X))
ELSE
Generate an exponential random variate E (which can be done as
U-(pm+p,)
E «-log(———mmm—m)).
( 1-ppy P, »
Xe—m-br-N E
Accept «—[mee(x—(m_b‘)mls,f(X)] (wk(ljich is e;{uivalem, to ' Accept
- -+ r
(V] e <f (X)), or to Accept (V] -——1—(1"'—;’—’——-5f XN
“Pm ~Vr

'UNTIL Accept
RETURN X

In most implementations, this algorithm can be conslderably simplified. For one
thing, the set-up step can be Integrated In the algorithm. When the denslty Is
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monotone or symimetric unlmodal, other obvious simplifications are possible.

Example 2.1. The exponential power distribution (EPD).
The EPD density with parameter 7>0 Is

f(z) = (2P(1+—1;))_le‘|“ s

Generatlon for thls density has been dealt with In Example IV.6.1, by transfor-
mations of gamma random variables. For 7>>1, the density s log-concave. The
values of a,b in the optlmal rejectlon algorithm are easlly found In thls case:
a =b =1. Before giving the detalls of the algorithm, observe that the rejectlon
constant, the area under the domlnating curve, 1s f (0)(a +b ), which 1s equal to

1 /1"(1+-—1-). As a function of 7, the rejectlon constant is a unimodal functlon with
T

value 1 at the extremes 7==1 (the Laplace density) and 7Too (the uniform [-1,1]

density), and peak at

1

0.8856031944...
formly over all 721, the rejection rate Is extremely good. For tityn_l_portant case

e . At the peak, the wvalue s
0.4616321449... :

(see e.g. Abramowitz and Stegun (1970, p. 259)). Thus, unl-

of the normal denslty (7==2) we obtaln a value of 1/1“(—2—) = -‘-*-. The algo-
s

rithim can be summarized as follows:
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REPEAT

Generate a uniform [0,1] random varfate U and an exponential random variate E*
FU<i-L '
o
THEN
X U (note that X is uniform on [0,1—--1—-])
p

Accept —[ | X | "< E¥]
ELSE

Generate an exponential random variate E (which can be done as

E —-log(n(1-U))).
Xe1-2+1E

T T
Accept —[ | X |"SE+E#+|

UNTIL Accept
RETURN SX where S is a random sign.

The reader will have little difficulty verlfylng the validity of the algorithm. Con-
sider the monotone density on [0,00) glven by (I‘(1+ )) ¢~*'. Thus, with

1
m =0,a =1,h'(1)=-7, we obtaln a*=1-—. Slnce we know that | X |7 Is distri-
T

buted as a gamma (—1-) random varlable, 1t Is easlly seen that we have at the
T

same tlme a good generator for gamma random varlates with parameter less than
one. For the sake of easy reference, we glve phe algorithm In full:
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Gamma generator with parameter a less than one

REPEAT
Generate a uniform {0,1] random variate U and an exponential random variate E#.
IF U<1-a
THEN
1
Xe=U* {note that U is uniform on {0,1~a])
Accept [ | X | <E*)
ELSE
Generate an exponential random variate E (which can be done as

Eetog 0,

1
X —(1-a +aE)*
Accept +[ | X | <E+E#*)
UNTIL Accept
RETURN X i

Example 2.2. Complicated densities.

For more complicated densitles, the equation f (z)=f (m)/e can be
difficult to solve explicitly. It Is always possible to take the pessimlstic,. or

minimax, approach, by settlng ¢ and b both equal to In some

_—
(e-1)f (m)’

casés, b can be set equal to O. In the set-up of the algorithm, 1t Is still necessary
to evaluate the dertvative of log(f ) at the polnts m +a, m -b, but this can be
done explicitly when f s glven in analytic form. This approach can be
automated for the beta and generallzed Inverse gaussian distributlons, for exam-
ple. When m +a or m-b fall outside the support of f , one should conslder
one-talled dominating curves with the constant sectlon truncated at the relevant
extremal polnt of the support. For the beta density for example, this leads to an
algorlthm which resembles In many respects algorithm B2PE of Schmelser and
Babu (1980). |}
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Example 2.3. Algorithm B2PE (Schmeiser and Babu, 1980) for beta
random variates.

In 1980, Schmelser and Babu proposed a highly efficlent algorithm for gen-
eratlng beta random variates with parameters ¢ and & when both parameters
are at least one. Recall that for these values of the parameters, the beta density
is log-concave. Schmelser and Babu partition the Interval [0,1] 1nto three Inter-
vals: in the center Interval, around the mode m = —ﬁ—l—z—, they use as dom-

a —
Inating functlon a constant functlon f (m). In the tall Intervals, they use

exponentlal domlnating curves that touch the graph of f at the breakpolnts. At
the breakpolnts, Schmelser and Babu have a discontlnulty. Nevertheless, analysls
slmllar to that carrled out In Theorem 2.6 can be used to obtain the optimal
placement of the breakpolnts. Schmelser and Babu suggest placing the break-
polnts at the inflectlon polnts of the density, If they exlst. The Inflection polnts
are at :

max(m -0,0)
and

min(m +o,1)

where o = M-}—-lb;n_%l If ¢+4+b>3 and o = oo otherwise. Two Inflection
V a - ;

polnts exlst on [0,1] when m -0 and m +0c both take values In [0,1]. In that case,
the area under the domlnating curve 1s easlly seen to be equal to

' 1 1
20/ (m¥+f 0 N T T Tor T

= [ (m)(20+ ——2— (1 +0)(1-m ~0)+(m ~0)(1=m +0))

o(a +b-2)
1 1
= f (m )(20‘+m2m (1-m )(l—m))
=4f (m)o.

Thus, we have the Interesting result that the probabllity mass under the
exponential talls equals that under the constant center plece. One or both of the
talls could be mlisslng. In those cases, one or both of the contributlons f (m)o
needs to be replaced by f (m)m or f (m)1-m). Thus, 4f (m )o Is a conserva-
tive upper bound which can be used In all cases. It can be shown (see exercises)

that as a,b—o0, 4f (m)o— -—8- Furthermore, a llttle addltlonal analysls
T

shows that the expected area under the domlinating curve 1s uniformly bounded
over all values of a,b >1. Even though the flt is far from perfect, the algorithm
can be made very fast by the Judiclous use of the squeeze princlple. Another
acceleratlon trick proposed by Schmelser and Babu (algorithm B4PE) conslsts of
partitioning [0,1] Into 5 Intervals Instead of 3, with a llnear domlnating curve
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added In the new Intervals.

Algorithm B2PE for beta (a,b) random variates

[SET-UP)

a-1
m ————
a+b-2

IF o +b >3 THEN oo / 20=m)
a+b-3

IF a <2
THEN z «-0,p +—0
ELSE
z+—m-o
a-1 b-1
T 1-z

(@ ~1)log(—=
v —e a-1

P

)+(b ol)log(‘zl-_:?-)-f-(a +b-2)log(a + b ~2)

P

Now, z is the left breakpoint, p the probability under the left exponential tail, A the ex-
ponential parameter, and v the value of the normalized density f at z.

IF b <2
THEN y +1,q +0
ELSE
ye—m-+o
- a-1 b_—l
y 1-y
(8 =1)10g(—tm) 4 (b ~1)log(—=te) o+ (a +b ~2)iog(a +b ~2)
we—e a-1 b-1
P
L

Now, y is the left breakpoint, ¢ the probability under the left exponential tail, s the ex-
ponential parameter, and w the value of the normalized density f at y.



VII.2.LOG-CONCAVE DENSITIES 307

[GENERATOR]
REPEAT
Generate iid uniform [0,1] random variates U,V . Set U—U(p +q+y-z).
CASE
U<Ly-=:
X +2z +U (X is uniformly distributed on [z ,y])
FX<m
THEN Accept [V <w +M-}:-_—v—2-]
m —
(y-X)1-w) ]

ELSE Accept —[V <w +
y-z<U<Ly-z+p:

U—~(y~z ;
U <———(—‘14———2- (create a new uniform random variate)

Xz +—)1t-log(U ) (X is exponentially distributed)

Accept —[V < A(—)—(—_—5-2i~l]

V+VUp (create a new uniform random variate)

y-z+p ZU:

U hw (create a new uniform random variate)
q

Xy ——l-log(U ) (X is exponentially distributed)
u
Accept —[V < _‘.‘..(y_"g_)_"_i]
V+—VUw (create a new uniform random variate)
IFF NOT Accept THEN
T —log(V)
IF T >-2(a +b-2)(X-m)?

THEN
)+(a +b —2)log(a +b -2)]

X )1 (5 -1)0g(
a-1

Accept [T <(a -1)log( 2_}f
UNTIL Accept

RETURN X

The algorithm can be Improved In many ways. For example, many constants can
be computed In the set-up step, and quick rejectlon steps can be added when X
falls outside [0,1]. Note also the presence of another qulck rejection step, based

upon the foliowing inequallty:

[ (z) _ _ e )2
log(——-——f (m)) < —2(a +b-2)(z-m ).



308 VII.2.LOG-CONCAVE DENSITIES

The quick rejection step Is useful in sltuatlons just like this, l.e. when the fit Is
not very good. ]

Example 2.4. Tails of log-concave densities.

When f Is log-concave, and a random varlate from the right tall of f ,
truncated at { >m where m 1Is the mode of f , Is needed, one can always use the
exponential majorizing function:

ﬂ.)_(x_t)
J @) f(t)el®) (z 2t).

The flrst systematic use of these expomnential talls can be found Iln Schmelser
(1980). The expected number of iterations In the rejection algorithm s

12)
| f1e) ) [ f
t

2.7. Exercises.
1. The Pearson IV density. The Pearson IV denslty on R has two parame-
ters, m >'-§- and s €ER, and Is glven by

f(z)= c -8 arctanz
(1+z?)™

Here ¢ 1s a normallzation constant. For s =0 we obtaln the ¢ denslty. Show
the following:

A. If X 1s Pearson IV (m,s), and m >1, then arctan(X) has a log-
concave denslty

g(z)=ccos® ™ Uz)e* (|z | S_;L) :

—2 )

2(m-1)"

C. Glve the complete relection algorithm (exponential version) for the dis-
tribution. For the symmetric case of the { denslty, glve the detalls of
the rejection algorithm with rejection constant 2.

The mode of g occurs at arctan(-
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D. Find a formula for the computation of ¢ .

2. Prove that a mlxture of two log-concave densltles 1s not necessarlly log-
concave.

3. Glve the detalls of the rejection algorithm that is based upon-the Inequallty
of Theorem 2.4. »

4, Log-concave densltles can also occur In R¢. For example, the multlvarlate
normal denslity 1s log-concave. The closure under convolutions also holds In
R (Davidovic et al., 1969), and marglnals of log-concave denslties are agaln
log-concave (Prekopa, 1973). Unfortunately, 1t 1s useless to try to look for a
generalizatlon of the Inequalltles of this sectlon to R ¢ with d >2 because of
the following fact which you are asked to show: the supremum over all log-
concave densltles with mode at 0 and f (0)=1 is the constant functlon 1.

5. To speed up the algorithms of thls sectlon at the expense of preprocessing,
we can compute the normallzed log-concave density at n >1 carefully
selected polnts, and use rejectlon (perhaps comblned with squeezing) with a
domlnating curve conslisting of several pleces. Can you glve a universal
recipe for locating the polnts of measurement so that the rejection constant
Is guaranteed to be smaller than a function of n only, and this function of n
tends to 1 as n —0o? Make sure that random varlate generation from the
dominating denslity is not difficult, and provide the detalls of your algorithm.

8. This is about the area under the domlnating curve In algorithm B2PE
(Schmelser and Babu, 1980) for beta random varlate generatlon (Example
2.3). Assume throughout that a ,b >1.

(1) o<m If and only If a >2, c<1-m If and only If b >2. (Thus, for
a,b >2, the area under the domlnating curve Is precisely 4/ (m )o.)

1) lUm 4f (m)o= \/E Use Stirling’s approximation.
T

a,b -0

(1) The area under the dominating curve Is unlformly bounded over all
a,b >1. Use sharp Inequallties for the gamma function to bound f (m).
Conslder 3 cases: both a,b >2, one of a,b 1s >2, and one Is <2, and
both a,b are <2. Try to obtaln as good a uniform bound as possible.

(Iv) Prove the quick rejection lnequallty used In the algorithm:

lOg(—f—(—x—)—) < -2(a+b-2)(zx-m)?.

f (m)
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3. INEQUALITIES FOR DENSITIES.

3.1. Motivation.

The previous sectlon has shown us the utility of upper bounds In the
development of unlversal methods or black box methods. The strategy Is to
obtain upper bounds for densitles In a large class which

(1) have a small Integral;

(11) are deflned In terms of quantlities that are elther computable or present In
the definition of the class.

For the log-concave densities with mode at O we have for example obtalned an
upper bound In sectlon VIL.2 with integral 4, which requires knowledge of the
position of the mode (this Is In the deflnitlon of the class), and of the value of
f (0) (this can be computed). In general, quantities that are known could include:

. A uniform upper bound for f (called M);

. The r-th moment u, ;

. The value of a functlonal [f %

. A Lipschltz constant;

. A uniform bound for the s-th derivative;

. The entlre moment generating function M (¢), tER ;
. The entire distribution function F (z ), z €ER ;

. The support of [ .

TQHEHOOW»

‘When thls information 1s combined in ¥varlous ways, a multitude of useful dom-
Inating curves can be obtalned. The goodness of a domlnating curve 1s measured
In terms of its Integral and the ease with which random varlates with a denslty
proportional to the domlnating curve can be generated. We show by example how
some Inequallties can be obtalned.

3.2. Bounds for unimodal densities.

Let us start with the class of monotone densitles on [0,1] which are bounded
by M. Note that iIf M 1s unknown, 1t can easlly be computed as f (0). Thus, the
_only true restrictlon Is that we must know that f vanishes off [0,1]. The trivial
Inequallty :

J(z) < Ml y(z)

Is not very useful, since the Integral under the dominating curve is M. There are
several ways to Increase the efficlency:

1. Use a table method by evaluating In a set-up step the value of f at many
polnts. Baslcally, the domlnating curve Is plecewise constant and hugs the
curve of / much better. These methods are very fast .but the need for extra
storage (usually growing with M) and an additlonal preprocessing step
makes this approach somehow different. It should not be compared with
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methods not requirlng these extra costs. It will be developed systematically
In chapter VIII.

2. Use as much Information as possible to Improve the bound. For example, In
the Inequallty f (z )< M, the monotoniclity s not used.

3. Ask the user if he has a.ddltlonal knowledge In the form of moments, gquan-
tlles, functionals and the llke. Then construct good dominating curves.

We will illustrate approaches 2 and 3. For all monotone denslties, the followlng is
true:

Theorem 3.1.
For all monotone densities f on [0,00),

1
f(@)< =.
z
It f is also convex, then

[@) <5

Proof of Theorem 3.1.
Fix z >0. Then, by monotonlcity,

gf (2)< [f(y)dy <1.
0 .

When f 1s also convex, we can in fact use a geometrical argument: If we wish to
find the convex f for which f (z) 1s maximal, 1t suffices to consider only trlan-

gles. This class 1s the class of all densitles 2a (1-az ), , 0<z 5-‘1;. Thus, we find

a for which f (z) Is maximal. Setting the derlvatlve with respect to a equal to O

glves the equation 1-az —az =0, l.e. @ =?1-. Resubstitution glves the bound. .
T

The bounds of Theorem 3.1 cannot be improved In the sense that for every
T, there exlsts a monotone (or monotone and convex) f for which the upper
bound Is attalned. If we return now to the class of monotone densities on [0,1]
bounded by M, we see that the following Inequallty can be used:

1
f(z) < mln(M,-;)I[o‘I](x) -
The area under the domlnating curve ls 1+log(M ). Clearly, this Is always less

than M. In most appllcations the improvement In computer time obtalnable by
using the last Inequality Is noticeable If not spectacular. Let us therefore take a
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moment to glve the detalls of the corresponding rejection algorithm. The dom-
Inating density for relectlon is

g(z)= min(M ,=)jg ()

1
1+log(M)
It has distributlon function

Mz
1+log(M)
1+log(Mzx ) 1
1+log(M) 'M

Uslng Inverslon for generation from ¢, we obtaln

Rejection algorithm for monotone densities on [0,1] bounded by M

REPEAT

Generate iid uniform [0,1] random variates U,V .
1

IFrU<e————

— 1+log(M)

THEN '

U
X «-——M-(Hlog(M )

IF VM <f (X) THEN RETURN X
ELSE

1
X e——¢ U (2++10g(M ))-1
M

IF V <Xf (X) THEN RETURN X
UNTIL False : '

When f s also convex, we can use the lnequality
f(@) < cg(x)

where
(z)‘——— _2 min(M L Mg p(z)
g 1+log(2M) Yoy (0] )

It has distributlon function
1+log(2M) - T 2M
1+log(2Mz ) , 1 <z<1.
1+log(2M) 2M— -

Uslng Inversion for generation from ¢, we obtaln
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Rejection algorithm for monotone convex densities on [0,1] bounded by M

REPEAT
Generate iid uniform (0,1] random variates U,V

1
U< —
— 1+log(2M)

THEN
U
X« 21‘/1(1-+-log(2M )]

IF VM <f (X) THEN RETURN X
ELSE

1 vt+logaM))-1
X e———e (1+log )
2M

IF V<2Xf (X) THEN RETURN X
UNTIL False

The expected number of lteratlons now Is —1—-_’-_2%9-44—), which 1s for large M

roughly speaking half of the expected number of lteratlons for the nonconvex
cases.
The functlon -}E- Is not Integrable on [1,00), so that Theorem 3.1 Is useless for

handliing infinite talls of monotone densltles. We have to tuck the talls under
some integrable function, yet uniformly over all monotone densitles we cannot

get anything better than l. Thus, additlonal information is required.
T

Theorem 3.2.
Let f be a monotone denslty on [0,00).
A. If [z f (z) dz <p, <oo where r >0, then

(r+1)u
f(@) < —;,—H'L (z >0) .
B. In any case, for all 0<a<1,
1
Jro®
[ (@) € ——— (2>0).

xa
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Proof of Theorem 3.2.

For part A we proceed as follows:
z

r+1
> [yf dy > FRCH A .

ur_{y J(y)dy > e

For part B, we use the trivial observation

zf@)< [/° 1

For monotone densltles on [0,00), bounded by M =f (0), Theorem 3.2 pro-
vides us with bounds of the form

/(@) < mnM, ) @>0)
z

where we can take (A ,a ) as follows:

Information A a

[z f (z)dz <p, <oo | (r+lp, | r

L
(J*)® Lva<oo Vo

Q= |+

In all cases, the area under the dominating curve Is
1 a-1
a

&AM ¢

a-1

Furthermore, random varlate generation for the dominating density can be done
quite easlly via the Inversion method or the Inverse-of-f method (section IV.8.3):
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Theorem 3.3.

Let g be the density on [0,00) proportlonal to mln(M,—Aa—) where
z
M >0,A >0,a >1 are parameters. Then the followlng random varlables X have

denslty ¢:
1

A X =(TA4-)“

where U,V are 11d uniform [0,1] random varlates.

-t

ye-

al~

a Uzx 1If

B. Let z* be (Y\-AJ_) and let U be uniform on [0,1]. Then X +

— *
USa l,andXe— z — else.
a

(aU—(a-1))*""

Proof of Theorem 3.3.

By the Inverse-of-f method (sectlon IV.8.3), 1t suffices to note that a random
varlate with monotone denslty f can be obtalned as Uf “(Y) where Y has den-
sity f -1, It 1s easy to see that for monotone ¢ not necessarily Integrating to one,
Ug~}(Y) has density prolportlonal to ¢ If Y has denslty proportional to ¢! In

our case, ¢ Y(y) = (A)a ,0<y <M. To generate Y with denslty proportional
Y

a

to thls, we apply the Inverslon method. Verify that MV ¢! has distribution
1

1-—

function (%) * on [0,M], which ylelds a denslty proportional to g ~'. Plugging
this Y back Into Ug~(Y) proves part A.
Part B Is obtalnable by stralghtforward Inverslon. Note that z* Is the break-

T* o0
polnt where M=it—-, that ¢ =Mz*, and that [g= - z+¢=U The sum of
z 0 T¥ -
the two areas Is
LT
A*M °(1+ ).
a-~-1

Thus, with probabllity -9———1—, X Is distributed unlformly on [0,z%], and with the
a

complementary probabllity, X 1s distributed as

where V Is unlformly dis-

V a-1
tributed on [0,1] (the latter random varlable has density decreaslng as 7% on
U*,oo)). The uniform random varlates needed here can be recovered from the

-1
uniform random variate U wused In the comparlson with : glven that

- a-1
L’S——a 1, U al Is agaln uniform. Given that U > — aU~(a-1) 1s In turn
a a-
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uniformly distributed on [0,1]. ||}

For the sake of completeness, we wlll now glve the rejectlon algorithm for
generating random varlates with density f based upon the Inequality

/() < min(M,2) (@ 20).
z

Rejection method based upon part A of Theorem 3.3

REPEAT
Generate iid uniform [0,1] random variates U,V .

a
Y —MV !

1

XU

UNTIL Y < (X)
RETURN X

The valldity of this algorithm s based upon the fact that (Y ,Ug (Y ))=(Y,X)
Is uniformly distributed under the curve of ¢~!. By swapplng coordinate axes, we
see that (X ,Y) Is uniformly distributed under ¢, and can thus be used In the
rejectlon method. Note that the power operation Is unavoldable. Based upon
part B, we can use rejection with fewer powers.
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Rejection method based upon part B of Theorem 3.3.

REPEAT

Generate iid uniform [0,1] random variates U,V .
F U<l
a
THEN

X

a
a-1
IF VM <f (X) THEN RETURN X
ELSE

Uz*

1
X e—z*(aU~(a-1)) !
IF VA <X®f(X) THEN RETURN X
UNTIL False

For both Implementatlons, the expected number of computations of f Is equal to
the expected number of lterations,
1 a-l

E(N)=——a-1-A7M s

It 1s Instructlve to analyze this measure of the performance In more detall. Con-
slder the moment verslon for example , where A =(r +1)u,, a=r +1 and y, Is
the r -th moment of the monotone denslty. We have

Theorem 3.4.

Let E(N)M,r,A ,a,u, be as defined above. Then for all monotone dens!-
tles on [0,00),

E(N)> “"1{‘

For all monotone denslties that are concave on thelr support,
1

E(N) < 2(1+3r—)(r to) T < 2(1+-1—) .

Finally, for all monotone log-concave densitles,

. 1
ey 1
E(N) < (1+3)T(r +2)) 7' ~ f-’—:—(as r—00) .
r
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Proof of Theorem 3.4.

‘We start from the expression
1

E(N) = (142) (r +1)M" )" .

The product M u, Is scale Invarlant, so that we can take M =1 without loss of
generality. For all such bounded densltles, we have 1-F (z )>(1-z ). Thus,

p, = [z" [(z)dz = [ra"'(1-F (z)) dz
0 0

> [rz"'(1-7) dz
0

roo_ 1
r+1 r+1

Thls proves the first part of the theorem. Note that we have tmpllcltly used the
fact that every random varlable with a denslty bounded by 1 on [0,00) Is sto-
chastically larger than a uniform [0,1] random variate.

For the second part, we use the fact that all random varlables with a mono-
tone concave density satisfylng f (0)==M =1 are stochastically smaller than a

random varlable with denslty (1—%)+ (exercise 3.1). Thus, for this density,

2
— re_ T — or=1 _
Hr "{x (1 2)dz 2 (r+1 r+2) (r+1)(r +2)

Resubstitution gives us part B for concave densltles. Finally, for log-concave den-
sltles we need the fact that f (0)X Is stochastically smaller than an exponentlal
random variate. Thus, In particular,

o0

My, < fy"eVdy =T(r+1).
0

This proves the last part of the theorem. Jj

A brief discusslon of Theorem 3.4 1s In order here. First of all, the Inequall-
tles are quite Inefficient when r s near 0 In view of the lower bound

E(N )_>_1+—1—. What is Important here Is that for important subclasses of mono-~
T

tone denslties, the performance Is uniformly bounded provided that we know the
r-th moment of the denslty In case. For example, for the log-concave densltles,
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we have the following values for the upper bound for E (IV):

r E(N)< | Approximate value
4
1 \—/;- 2.3094...
2 il 1.88088...
43
3 —-8-T 1.78383...
3 5T
4 5 T 1.7470...
2 GE
5 -—-I—ZT 1.7352...
5 7;
6 ! - 1.75366...
3 8-7-
7 16x 1.7367...
7 9;
too 12

The upper bound Is minlmal for r near 6. The algorithm Is guaranteed to per-
form at 1ts best when the slxth moment Is known. In the exerclses, we will
develop a slightly better lnequallty for concave monotone densitles. One of the
features of the present method Is that we do not need any Information about the
support of f - such Information would be required If ordinary rejectlon from a
uniform density 1s used. Unfortunately, very few important densitles are concave
on thelr support, and often we do not know whether a density 1s concave or not.

The famlily of log-concave denslties is more Important. The upper bound for
E (N) In Theorem 3.4 has acceptable values for the usual values of r:

r E(N )< | Approximate value
1 e 2.82...
1
2 363 2.7256...
2
1
4, %
3 -3-24 2.9511...
Too too

In this case, the optimal Integer value of r Is 2. Note that if x4, Is not known,

I'(r +1
but is replaced in the algorithm and the analysis by its upper bound —-S——r—-)—

’

then both the algorlithm and the performance analysis of Theorem 3.4 remaln
valld. In that case, we obtaln a black box method for all log-concave densitles on
[0,00) with mode at O, as In the previous section. For r ==2, the expected number
of Iteratlons (about 2.72) is about 38% larger than the algorithm of the previous
sectlon which was speclally developed for log-concave densltles only.
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3.3. Densities satisfying a Lipschitz condition.
We say that a function f Is Lipschitz (C') when

1S @)xf(y)]
2oy |z-y | =

When f 1Is absolutely contlnuous with a.e. derlvative f/, then we can take
C=sup | f'|. Unfortunately, some important functions are not Lipschltz, such
as \/; . However, many of these functions are Lipschitz of order o: formally, we
say that f 1s Lipschitz of order o with constant C (and we write f €Lip «(C))
when

sup [ f =)/ ()] <c .
¢y |z-y |°
Here «€(0,1] I1s a constant. It can be shown (exercise 3.8) that the classes

Lip ,(C) for a>1 contaln no densitles. The fundamental Inequallty for the
Lipschitz classes 1s glven below:

Theorem 3.5.
When f is a density in Lip ,(C) for some C >0, a€(0,1], then

a

11—
— a+1
a

a+1
)

&

C

J (2) < (min(F (z),1-F (z))

Here F 1s the distribution function for / . In particular, for a==1, we have
f (z) < V2CmiIn(F (z ),1-F (2)) .

Proof of Theorem 3.5.
Fix z, and define y =/ (). Then fix z >z . We clearly have
J(z)2 [ (z)C@-z).

The density f which ylelds the maximal Vvalue for f (z) 1s equal to the lower
bound for f (z) glven above. It vanishes beyond
1

2¥ = z+(l—g-)-)z .

By Integration of the previous lneQuailty we have
2%

1-F (2) 2 [(f (2)-C(z-2)) dz

C (z#-g )t!
a+1

=/ (z)e*-a )
o) E oy

_ (2)a_ (z),a

= 1 @) = L&),
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a+1 1

— a a T
=/ a+10 '

By symmetry, the same lower bound is valld for F (z). Rearranging the terms
gives us our result. Jj

Theorem 3.5 provides us with an Important bridging device. For many dis-
- tributions, tall Inequallties are readlly avallable: standard textbooks usually glve
Markov's and Chebyshev’'s Inequalities, and these are sometimes supplemented by
varlous exponential lnequalities. If f Is In Lip,(C) on (0,00) (thus, a discon-
tinuity could occur at 0), then we stlll have

1
1 @) < |a-FepEten o

Before we proceed with some examples of the use of Theorem 3.5, we collect some
of the best known tall Inequallties In a lemma.:

Lemma 3.1.

Let F be a distribution function of a random varlable X . Then the follow-
ing lnequailties are valid:

r .
A. P(|X|22)<L E(| XI . ) , ¥ >0 (Chebyshev’s Inequallty) .
z
B. 1-F(z) < M(t)e™® ,t>0 where Mv(t)=E(etX) Is the moment generat-
Ing functlon (Markov's Inequality); note that by symmetry,
F(z) < M(-t)e® ,t>o0.

C. For log-concave f with mode at O and support on [0,00),
1-F(z) < e~/

r E(X]0)

D. For monotone f on [0,00), 1-F(z) < ({
r+1 |x l'

, T,r >0

(Naruml's lnequallty).

Proof of Lemma 3.1.

Parts A and B are but speclal cases of a more general Inequallty: assume
that ¥ 1s a nonnegatlve functlon at least equal to one on a set A . Then

P(X€A)= [dF(z) < [d(z) dF (z) S E(Y(X)) .
A A

,
For part A, take A =[z,00)U(~00,z] and ¥(y )=-Jl—y—{—r-. For part B, take
z
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A =[z ,00) and ¥(y )=¢*¥=%) for some t >0. Part C follows simply from the fact
that for log-concave densitles on [0,00) with mode at 0, f (0)X Is stochastically
smaller than an exponentlal random varlable. Thus, only part D seems non-
trivial; see exercise 3.7. |

If inequallties other than those given here are needed, the reader may want
to consult the survey article of Savage (1861) or the speciaiized text by Godwin
(1984).

Example 3.1. Convex densities.

When a convex denslty f on [0,00) Is In sz ,(C), we can take C=j'(0).
By Narum!’s inequality for monotone densities,

\/ 21O ke
f (z) < min(f (0), ),

r
2

z

where 4, =FE (| X | 7). This Is of the general form dealt with In Theorem 3.3. It
should be noted that for this Inequallty to be useful, we need r >2. i

Example 3.2. Densities with known moment generating function.

Patel, Kapadia and Owen (1976) glve several examples of the use of moment
generating functions M (t) In statistles. Uslng the exponentlal version of
Markov’s inequallity, we can bound any Lip,(C) density as follows:

vaecetl=lpmi) 220
Vacet1*IM(-t) ,z<0.

Here t >0 I1s a constant. There 1s nothing that keeps us from making ! depend
upon z except perhaps the simpllicity of the bound. If we do not wish to upset
this simplicity, we have to take one ¢t for all z. When f 1s also symmetric about
the origin, then the bound can be written as follows:

J(2) < cg(z)

¢ ——;-‘lz!
where g(x)—-::e

rers|

: t
1s the Laplace denslty with parameter -5-, and

=\/ 32 C M(t)/t% 1s a constant which depends upon ¢ only. If this bound s
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used In a relectlon algorithm, the expected number of iterations Is c. Thus, the
best value for { Is the value that mlnimlzes M (t)/t%2. Note that ¢ Increases
with C' (decreasing smoothness) and with M (¢) (Increasing size of the tall). Hav-
ing picked ¢, the following rejection algorlthm can be used:

Rejection method for symmetric Lipschitz densities with known moment gen-
erating function

[SET-UP]
b—V2ZCM(t)
[GENERATOR]
REPEAT

Generate E,U, independent exponential and uniform [0,1) random variates.
Xh%E

UNTIL UbeE < f (X)

RETURN SX where S is a random sign. Jjj

Example 3.3. The generalized gaussian family.

The generallzed gausslan family of distributlons contalns all distributions for
which for some constant s >0, M(t)f_esztlz/2 for all ¢ (Chow, 1966). The mean
of these distributlons exlsts and s 0. Also, as shown by Chow (1868), both
1-F (z) and F (-z) do not exceed e~*7/2%" for all z >0. Thus, by Theorem 3.5,
when f €Lip (C),

z2

f(z) < svVBCH }— ERY

e
s v4am

The function in parentheses Is a normal (0,s V2) denslty. The relectlon constant
Is s vV8C . In 1ts crudest form the algorithm can be summarized as follows:
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Rejection algorithm for generalized gaussian distributions with a Lipschitz densi-

ty

REPEAT
Generate N ,E, independent normal and exponential random variates.
X «—~Ns 2

N [ (X)
UNTIL Py E Slog(-—\?ﬁ-)
RETURN X M

Example 3.4. Densities with known moments.

The previous three examples apply to rather small famllies of distributions.
If only the r-th absolute moment 4, Is known, the we have by Chebyshev's Ine-
quallty,

for all z,r >0. This leads to the inequallty

f () < v2C min 1,—\/£~ :

I
|z | ?
which 1s only useful to us for r >2 (otherwise, the dominating function is not
. 1
integrable). The Integral of the domlnating curve 1s vV8C —r—zu, ". Just which r
r—

Is best depends upon the distribution: decreases monotonically with r
L .
whereas y, " Is nondecreasing In r (this Is known as Lyapunov's Inequallty,

which can be obtalned In one llne from Jensen's Inequallty). .
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Example 3.5. Log-concave densities.

Assume that f 1s log-concave with mode at 0 and support contalned In
[0,00). Uslng 1-F (z) < e %/ (9 we observe that

/(0
VBC , f (0) 25+
f(z) < ( e ? ) (z>0).
f@©" 2
The top bound is 8(3) times a Laplace density. It is thus not difficult to see

that the following algorithm Is useful:

Rejection method for log-concave Lipschitz densities

REPEAT

Generate iid exponential random variates E | ,E,

2
X e-——F
fo!
UNTIL —EQ—Elslog(%%-)—)
RETURN X i

3.4. Normal scale mixtures.

Many distributlons In statlistics can be written as mixtures of normal denst-
tles In which the varlance is the mixture parameter. These normal scale mixtures
have far-reaching applications ranging from modellng to mathematical statistlcs.
The corresponding random varlables X are thus distributed as NY, where N 1is
normal, and Y s a poslitive-valued random varlable. The class of normal scale
mixtures 1s selected here to be contrasted agalnst the class of log-concave densi-

tles. It should be clear that we could have picked other classes of mixture distri-
butlons.

There are two sltuations that should be clearly distingulshed: In the first
case, the distribution of Y 1s known. In the second case, the dlstribution of Y 1Is
not expllicitly glven, but it 1s known nevertheless that X 1s a normal scale mlx-
ture. The first case Is trivial: one Just generates NV and Y and exits with NY . In
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the table below, some examples are given:

DENSITY OF X DENSITY OF Y )
Cauchy Density of 1/N where N is normal

Laplace Density of 1/V2E where E is exponential

Logistic Density of 2K where K has the Kolmogorov-Smirnov distribution
t, : Density of XZ%; where G is gamma (%)

Symmetric stable (@) | Density of V'S where § is positive stable (%)

This table 1s far from complete, and all the representations have been known for
qulite some time. For the Inclusion of the symmetric stable, see e.g. Feller {1971),
and for the Incluslon of the loglstic, see e.g. Andrews and Mallows. (1974). In fact,
1t 1s known that an even density f Is a normal scale mixture If and only if the
derivatives of f (Vz ) are of alternating sign for all z >0 (Kelker, 1971). Unfor-
tunately, for all the denslitles given in the table, efficlent direct methods of gen-
eration are known, so there is no reason why one should use the decomposition.

The more interesting case Is the one In which we Just know that the distrl-
bution Is a normal scale mixture. To develop universal relectlon methods for this
class of dlstributions, general lnequalities are needed. The following Inequalities
are useful for thls purpose:
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Theorem 3.68.

Let f be the denslty of a normal scale mixture, and let X be a random
varlable with density f . Then f Is symmetric and unimodal, f (z)<f (0), and
for all a >-1,

Ko

f(z) < Cam

where
we =E(|X|®

s the a-th absolute moment of X, and
1+a
)
Cc, = l 1+a] 1
e 1+a
2 2 ¢

14+a
5 )

For a =1 and a =2, we have respectively,

1@ < mngs 0, ELED,,
€ I
3
< 3.5 B
@) < mngr 0,8y 200

4

The areas under the domlinating curves are respectlvely,-\T_- f (0)ut;, and
e

Cpof (0)%)*/3 where C =3(3/e )V/2(2m)/8,

).

Proof of Theorem 3.8,

The unlmodality Is obvious. The upper bounds for f follow directly from
simllar upper bounds for the normal density. Note that we have, for all z,0>0,
z2 ' 1+ 1+a
Z o a5
e 20 S ( )1+a( - ) 2 .

|z |

Observe that

12

1oy
[ (@)= E(—=ze ")
) ( verY
where Y Is a random varlable used In the mixture (recall that X =NY). Using
the normal-polynomial bound mentloned above, this leads to the Inequallty
1+¢
) 1 ( 14-a )—"‘2
‘/271. I T I 1+a e

f (=)< E(Y®
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But in view of the relationship X=NY, we have
E(Y®)=E(|X |®*)E(|N |°). Now, use  the fact that
: 1+a

E(|N|*)Wer=2 2 IY 1-;—«1) (which follows by definitlon of the gamma

Integral). Thils glves the maln Inequallty. The speclal cases are easlly obtalned
from the maln inequallty, as are the areas under the dominating curves. Jjj

The algorithms of sectlon 3.2 are once agalin applicable. However, we are In
much better shape now. If we had Jjust used the unimodality, we would have
obtalned the inequality

a-+1 2y
2 lm |a+l

[ (z) < min(f (0), )

which 1s useful for ¢ >0. See the proof of Theorem 3.2. The area under this dom-
inating curve Is larger than the corresponding area for Theorem 3.6, which should
come as no surprise because we are using more Information in Theorem 3.8.
Notice that, just as In sectlon 3.2, the areas under the dominating curves are
scale Invariant. The cholce of a depends of course upon f . Because the class of
normal mixtures contvalns densitles with arbitrarily large talls, we may be forced
to choose a very close to O In order to make u, finlte. Such a strategy Is
appropriate for the symmetric stable denslty.

3.5. Exercises.

1. Prove the following fact needed In Theorem 3.4: all monotone densities on
[0,00) with value 1 at O and concave on thelr support are stochastlcally
smaller- than the trlangular density f (z )='(1-—§)+, l.e. thelr distribution

functions all dominate the distribution function of the trlangular density.
2. In the relection algorithm Immedlately preceding Theorem 3.4, we exlt some

*
of the time with X <———U——\/._i(___—3-. The square root ls costly. The speclal
al —(a—-1

case a==3 1s very Important. Show that V3U-2 s distributed as
max(3U-2,W ) where W 1Is another uniform [0,1] random varlate.

3. Concave monotone densities. In this exercise, we consider densities [
which are concave on thelr support and monotone on [0,00). Let us use

M={ (0), #r-‘=f$'f (z) dz.
2p, (r+1)
A. Show that f (z) < mln(M,(————r-:-l———M )4)-
x .
1
B. Show that the area under the domlnating curve 1s 2-27 %} times the
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1C.

area under the domlnating curve shown in Theorem 3.4. That Is, the
area lIs

1 r 1
(2—2'+1)(1+%)M r+1((7. _|_1)Mr)r+1 .

C. Notlng that the Improvement 1s most outspoken for r =1 (2—\/2-%0.59)
and r =2 and that it 1s negligible when r Is very large, glve the detalls
of the rejection algorithm for these two cases.

Glve the strongest counterparts of Theorems 3.1-3.4 you can find for unimo-
dal densities on the real line with a mode at 0. Because this class contalns
the class dealt with In the sectlon, all the bounds glven In the sectlon remain
valld for f (| z |), and this leads to performances that are preclsely double
those of the varlous theorems. Mimlcking the development of sectlon VII.2
for log-concave densltles, thls can be Improved If we know F (0), the value of
the distributlon function at 0, or are willing to apply Brent’s mirror principle
(generate a random varlate X with denstty f (z)+/f (~z) ,z >0, and exlt

with X or —X with probabllitles (z) and [ (2
f@)+f (-z) f @)+ [ (-z)
tively ). Work out the detalls.

Compare the relectlon constant of Example 3.5 (log-concave densitles on
[0,00)) With 2, the rejectlon constant obtalned for the algorithm of sectlon
VII.2. Show that 1t Is always at least 2, that 1s, show that for all log-
concave densitles on [0,0c0) belonging to Lip ;(C),

Vel -,
f© —
Hint: fix C, and try to find the density in the class under conslderation for

which f (0) 1s maximal. Conclude that one should never use the algorithm of
Example 3.5.

respec-

Show that the class Lip ,(C ) has no densities whenever a>1.
Prove Naruml!'s Inequalitles (Lemma 3.1, part D).

When f Is a normal scale mixture, show that for all a >0, the bound of
Theorem 3.8 Is at least as good as the corresponding bound of Theorem 3.2.

Show that f s an exponential scale mixture If and only If for all z >0, the
derlvatlves of f are of alternating sign (see e.g. Feller (1971), Kellson and
Steutel (1974)). These mixtures conslst of convex denslties densities on [0,00).
Derlve useful bounds simllar to those of Theorem 3.8.

The z-distribution. Barndorff-Nlelsen, Kent and Sorensen (1982) Intro-
duced the class of z-distributions with two shape parameters. The sym-
metric members of this famlly have density :

f(z)= !

(reR),
4* B, , cosh?* (%)
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where a >0 Is a parameter. The translation and scale parameters are omit-
ted. For @ =1/2, this gives the hyperbollc cosine distributlon. For a =1 we
have the logistic distribution. For Integer a It Is also called the generalized
logistic distribution (Gumbel, 1844). Show the following:

A. The symmetric z-dlstributlons are normal scale mlxtures (Barndorfl-
Nielsen, Kent and Sorensen, 1982).

B. A random varlate can be generated as log( ) where Y 1s symmetric

1-Y
beta distributed with parameter a.

C. If arandom variate Is generated by rejectlon based upon the inequalities
of Theorem 3.8, the expected time stays uniformly bounded over all
values of a .

Additional note: the general 2z distrlbution with parameters a,b >0 1is

defined as the distribution of log( n YY) where Y 1s beta (a,b).

11. The residual life density. In renewal theory and the study of Polsson
processes, oné can assoclate with every distribution function F' on [0,00) the
residual life density

f(z)= L&)

where pu== f (1-F) 1s the mean for F . Assume that besldes the mean we also
know the second moment u,. This Is the second moment of F', not f . Show
the following:

A f(2) < py/(u(z?+p,))
B. The black box algorithm shown below s valld and has rejectlon con-

stant m+/ 1o/ 1. The rejectlon constant Is at least equal to m, and can be
arblitrarlly large.

REPEAT

Generate a Cauchy random variate Y, and a uniform {0,1] random vari-
ate U.

X —/uY
UNTIL U <1+ Y)H(-F (X))
RETURN X

12. Assume that f Is a monotone denslty on [0,00) with distribution function
F . Show that for all 0<t <z,

' 1-F (1)
f@) S —=.
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Derlve from this the inequality

f ()< f©)-F(z- 7 1(0)

Note that these Inequalltles can be used to derlve rejectlon algorithms from
tall Inequalities for the distribution function.

) -

4. THE INVERSION-REJECTION METHOD.

4.1. The principle.

Assume that f Is a density on R, and that we know a few things about f ,
but not too much. For example, we may know that f s bounded by M, or that
f €Lwp (C), or that f 1is unlmodal with mode at 0. We have in addltlon two
black boxes, one for computing f , and one for computing the distribution func-
tlon F'. The relection method 1s not applicable because we cannot a prior! find an
Integrable domlnating curve as for example In the case of log-concave densitles.
In many cases, thls problem can be overcome by the Inverslon-relection method
(Devroye, 1984). In 1ts most elementary form, 1t can be put as follows: consider a
countable partition of R Into Intervals [z;,z;,,) where ¢ can take posltive and
negative values. This partition is fixed but need not be stored: often we can com-
pute the next polnt z; from ¢ and/or the previous polnt. Generate a unlform
[0,1] random varlate U, and find the Index ¢ for which

F(z;) S U < F(z;44) .

Thus, Interval [z;,z;,) Is chosen with probabllity F (z; .,)-F (z;) by Inverslon. If
the z;’s are not stored, then some verslon of sequential search can be used. After
1 1s selected, return a random varlate X with denslty f restricted to the glven
Interval. What we have galned 1s the fact that the Interval Is compact, and that
In most cases we can easlly find a unlform domlnating denslty and use rejectlon.
For example, If f 1s known to be bounded by M, then we can use a uniform
curve with value M. When f €Lip,(C), we can use a trlangular domlnating
curve with value min(/f (z;)+C (z-%;),f (2; )+ C (2; -7 )). When [ 1s unimo-
dal, then a domlnating curve with value max(f (z;),f (z;,,)) can always be used.

There are two contributors to the expected time taken by the inversion-
rejectlon algorithm:

(1)  E (N, ): the expected number of computations of F' In the sequentlal search.
(1) E(N,): the expected number of lteratlons In the rejectlon method. It Is not
difficult to see that thls Is the area under the domlnating curve.

In the example of a density bounded by M but otherwlse arbitrary, the area
under the domlnating curve Is co. Thus, E (NN, )=co. Nevertheless N, <oco with
probabllity one. Thls fact does not come as a surprise consldering the magnltude
of the class of denslitles Involved. For unimodal f , even with an Infinite peak at



332 VIL.4.INVERSION-REJECTION METHOD

the mode and two blg talls, it Is always possible to construct a partitlon such
that the area under the domlnating plecewlse constant function is finite. Thus, In
the analysls of the different cases, It will be Important to distingulsh between the
famllles of densitles.

The Inverslon-reJection method 1s of the black-box type. Its maln dlsadvan-
tage 1s that programs for calculating both f and F are needed. On the positive
slde, the famlilles that can be dealt with can be gigantic. The method is not
recommended when speed Is the most Important issue.

We look at the three familles Introduced above in separate sub-sections. A
little extra tlme Is spent on the lmportant class of unimodal densitles. The
analysls 1s In all cases based upon the distributional propertles of Ns and N, .

4.2. Bounded densities.

As our first example, we take the famlly of densltles f on [0,00) bounded by
M. There 1s nothing sacred about the positlve half of R, the cholce 1s made for
convenlence only. Assume that [0,00) Is partitioned by a sequence

0=1,<T,<T,< """ .
Let us write p;=F (z; ,)-F (2;),12>0. In a black box method, the inversion

step should preferably be carried out by sequentlal search, starting from 0. In
that case, we have

PIN,2j)= % pi= [ =1-F(z;) (>1).

l.=j—1 ;4
Also,
o0 . [o0]
EWN,) =141 p; = S5 (-F (=) .
§ =0 { =0

Glven that we have chosen the :-th interval, the number of iterations In the
rejectlon step  is geometrically distributed with parameter
p; /(M (z; ,;—x;)), ¢+ 20. Thus, :

P(N,>q9)= (e ——— Y
N 29) = 3wl =)

Also,

E(N,)= §'p’._]\ff_(f"_if.1_—fi.)_

i =0 p;

= o0 .
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Example 4.1. Equi-spaced intervals.

‘When x‘-+1—:c,-=6_>0, we obtaln perhaps the slmplest algorithm of the
inverslon-rejection type. We can summarlze 1ts performance as follows:

o i+1) 5(i +1)

EN)=1+Xi [ [ <1+12 [ =z =1+ﬂ‘¥—l;
=0 0t z—O & 6

v, > 24,

PIN.>j)= % j

N, 27) = El’;(l-M5Ps)

{ =0

The sequentlal search 1s Intimately linked with the slze of the tall of the denslty
(as measured by E (X)). It seems reasonable to take é==cE (X ) for some unlversal
constant ¢. When we take ¢ too large, the probabllitles P (IN; > 7 ) could be
unacceptably high. When ¢ 1s too small, E(IV,;) Is too large. What Is needed
here 1s a compromlse. We cannot choose ¢ so as to minlmize E(N,+N,) for
example, since this Is co. Another method of design can be followed: fix 7, and
minimize P (N, >j)+P (N, 27) Thisis

%p,k——ﬁ + 2 Py

f =0 f=5-1

< Sp+ 2L+

=J f=7-1

where J 1s a positlve ilnteger to be plcked later. We have used the followlng sim-
ple Inequality:

a
j .
wa-y < 4 _jAL*t
a 741 o

Since we have difflculty minimizing the orlginal expresston and the last upper
bound, it seems logical to attempt to minimize yet another bound. This strategy
1s deliberately suboptimal. What we hope to buy Is simplicity and insight.
Assume that u=F (X ) 1s known. Then the tall sums of p;’s ca.n be bounded from

above by Markov's Inequality. In particular, using also (14— )-’ >2, 721, the

last expression Is bounded by
_u_+ JM 6 U+2
6 2(5+1)  &(5+1)

The optimal non-integer J s

/2(7+1)u
M&

and we wlll take the celling of this. Our upper bound now reads
u+2 Mo

+
2\/ Mu + ) . 2
‘ 2(7 +1) 7 +1
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The last thing left to do Is to minimize this with respect to é, the Interval width.
Notlce however that thls will affect only the second order term In the upper

bound (coefficlent of '-li-l ), and not the maln asymptotic term. For the cholce
J

b= 26‘}-4 , the second term lIs

V2M (u+2) '

741

The important observation Is that for any cholce of § that 1s independent of 7,

. . Mu 1
P(N,2j)+P(N,>5) < 24/ —E—+0(=).
(Ng 2 7)+P( J)< 2 2(J+1)+ (])

The factor M u 1s scale Invariant, and s both a measure of how spread out f 1s
and how difficult f 1s for the present black box method. For thls bound to hold,
1t 1s not necessary to know u. The maln term in the upper bound Is the contribu-
tlon from N, . If we assume the existence of higher moments of the distribution,
or the moment-generating function, we can obtaln upper bounds whlch decrease
faster than 1/V] as j —oo (exercise 4.1). |

There are other obvious cholces for Interval sizes. For example, we could
start with an Interval of width §, and then double the width of consecutive Inter-
vals. Because thls will be dealt with In greater detall for monotone densitles, it
wlll be skipped here. Also, because of the better complexity for monotone densl-
tles, 1t 1s worthwhile to spend more tlme there.

4.3. Unimodal and monotone densities.

This entlre subsection Is an adaptation of Devroye (1984). Let us first reduce
the problem to one that 1s manageable. If we know the position of the mode of a
unlmodal denslty, and If we can compute F (z) at all z, which Is our standing
assumption, then It Is obvious that we need only consider monotone densities.
These can be convenlently fllpped around and/or translated to O, so that all
monotone densitles to be considered can be assumed to have a mode at 0 and
support on [0,00). Unfortunately, compact support cannot be assumed because
nonllnear transformatlons to {0,1] could destroy the monotonlcity. One thing we
can assume however Is that we either have an Inflnite peak at O or an Infinlte tall
but not both. Just use the following splitting device:
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Splitting algorithm for monotone densities

[SET-UP)

Choose a number z >0. (If f is known to be bounded, set z+-0, and if f fs known to

have compact support contained in {0,¢ ], set z «—c .)

t—F(z)

[GENERATOR]

Generate a uniform [0,1] random variate U .

IF U>t
THEN generate a random variate X with (bounded monotone) density f (z)/(1~¢)
on (z ,00).
ELSE generate a random variate X with (compact support) density f (z)/t on
[0,2].

RETURN X

Thus, it suffices to treat compact support and bounded monotone densitles
separately. We will provide the reader with three general strategles, two for
bounded monotone densltles, and one for compact support monotone densities.
Undoubtedly, there are other strategles that could be preferable for certaln dens!-
tles, so no clalms of optimallty are made. The emphasls 1s on the manner In
which the problem 1s attacked, and on the Interactlon between deslgn and
analysis.- As we polnted out In the Introduction, the whole story Is told by the
quantitles £ (N, ) and E (N, ) when they are finite.

4.4. Monotone densities on [0,1].
In thls section, we will analyze the followlng Inversion-rejection algorithm:
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Inversion-rejection algorithm with intervals shrinking at a geometrical rate

Generate a uniform [0,1) random variate U .
X1
REPEAT

X

X2

-
UNTIL U Z2F(X)
REPEAT
Generate two independent uniform [0,1] random variates, V., W .
Y—Xa+(r-1)V) (Y is uniform on [X,rX))
S
UNTIL W <2222 50
RETURN Y

The constant r >1 Is a design constant. For a first quick understanding, one can
take r=2. In t,he first REPEAT loop, the lnversion loop, the followlng Intervals

are consldered: [-— 1), [——- —-) . For the case r =2, we have Interval halving as

we go along. For thls algorlthm,

£
E(N)= Y i [ f(z)dz,
t=1 ¢*
E(N,)= % Lf ey,
) §=1 T

The performance of this algorithm 1s summarized in Theorem 4.1:
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Theorem 4.1.
Let f be a monotone density on [0,1], and deflne

1
H(f )= [log()f (@) dz .
0

Then, for the algorlthm described above,

H(f) H(f)
Toz(r) S E(N,) < 1+——log(r)

and
1<EN)<STr.

The functional H (f ) satlsfles the following lnequalltles:
A. 1< H(f).

B. log . < H(f ) (valld even If f has unbounded support).

fa:f (z) dx
0
C. H(f) < 1+log(f (0)).
1

D. H(f)< %+2flog+f (z) f (z) dz (valld even If f Is not monotone).
0

Proof of Theorem 4.1.
For the first part, note that on {r = ,r 7)),
log(z) < 1+ log(z) ‘
log(r) — — log(r)

Thus, resubstitution In the expression of E (IV,) ylelds the first inequality. We
also see that E (IV,)>1. To obtaln the upper bound for E (/V,), we use a short
geometrical argument:

EWN,)= %

t==1 T

r-1
i

™)

o T
> [ fe)ds
17

-

I

{

r

f(z)dz Xr

1r s +1)

== 7

[ (z) dz

o 1~ I8
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<r.

Inequallty A uses the fact that —log(z ) and f (z) are both nonlncreasing on [0,1],
and therefore, by Steffensen’s Inequality (1925),
1

1 1
J-log(z)f (z) dz > [-log(z) dz[f (z)dz =1,
4] 0 o]

Inequality B uses the conyexlty of -log(z ) and Jensen's lnequallty. If X 1Is a ran-
dom variable with density f , then

H(f )= E(-log(X)) = -log(E (X)) .

Inequality C can be obtalned as a speclal case of another Iinequallty of
Steffensen’s (1918): In its original form, it states that if 0<h <1, and If ¢ 1s
nonincreasing and Integrable on [0,1], then '

1 a

Jo@)(z)dz < [g(z) da
0 0

1
where a =fh (z) dz. Apply this lnequality with g (z)=-log(z), h(z )=_/_(_z_)

0 f©)°
Thus, a = fl(o). Therefore,
1
7 (0)
H(f)
) < { ~log(z ) dz
= ye™¥ dy = ———(1+log(f (0)) .
1og({(o» /()

Inequality D 1s a Young-type inequality which can be found In Hardy, Littlewood
and Polya (1952, Theorem 239). |}

In Theorem 4.1, we have shown that E (/V,)<oo If and only If H(f )<oo.
'On the other hand, E (NV,) Is unlformly bounded over all monotone f on [0,1].
Our maln concern 1s thus with the sequentlal search. We do at least as well as In
~ the black box method of sectlon 3.2 (Theorem 3.2), where the expected number of
lterations in the rejection method was 1+log(f (Q)). We are guaranteed to have
E (N, )<14+(1+log(f (0)))/log(r ), and even if f (0)==o0, the Inverslon-rejection
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method can have E (N, )<co.

Example 4.2, The beta density.

Conslder the beta (1,a +1) denslty f (z)=(a¢ +1)(1-z ) on [0,1] where a >0

Is a parameter. We have f (0)=a+1, E(X)= L
a

Thus, by lnequalltles B
and C of Theorem 4.1,

log(a+2) < H(f ) < 1+log(a +1) .

We have H(f )~log(a) as a —oco: the average tlme of the glven Inverslon-
reJectlon algorithm grows as log(a ) as a —oo. |

In the absence of extra Informatlon about the denslty, it 1s recommended
that r be set equal to 2. Thils cholce also glves small computational advantages.
It 1s Ilmportant nevertheless to realize that this cholce Is not optimal In general.
For example, assume that we wish to minlmize E (N, +1V, ) , a criterlon in which
both contributlons are given equal welght because both N, and [V, count In
effect numbers of computations of f and/or F. The minimlzation problem Is
rather difficult. But 1f we work on a good upper bound for E (N, +1V, ), then 1t Is
nevertheless possible to obtaln:

Theorem 4.2.

For the Inverslon-rejection algorithm of thils sectlon with deslgn constant
r >1, we have

Inf E(N,+N,)
r>1

1 1
= U @y T ToeE (7 )-2ioatioa®# (7 )
__H{)
log(H(f )
as H (f )—oo. The bound 1s attalned for
_ _H({)

og(H (] )
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Proof of Theorem 4.2.
We start from
" H(f)
< —_—
E(N,+N,) < 1+r+ Toe(r)

Resubstitution of the value of r glven In the theorem glves us the lnequality.
This value was obtalned by functional iteration applied to

H(f)
log%(r)

an equation which must be satlsfied for the minimum of the upper bound (set the
derivatlve of the upper bound with respect to r equal to 0). The functlonal itera-
tlon was started at r=H (f ). That the value is not bad follows from the fact
that for H(f )>e,

1+7r +M > 1+___Iﬂ_)_

log(r) — log(H(f)) '

s0 that at least from an asymptotic point of view no Improvement s posslble over
the given bound. [Jj

r ==

As a curious application of Theorem 4.2, consider the case agaln of a mono-
tone denslty on [0,1] with finlte f (0). Recalling that H (f )<1+log(/f (0)), we see
that If we take

1+ f (0)
log?(1+/ (0))

a cholce which s Indeed Implementable, then

r ==

EWN,+N,)
< 141+ log(f (0)) log(f (0))
log?(1+log(f (0))) log(1+log(f (0)))-2log(log(1+log(f (0))))
(f ()

~ 1

log(1+log(f (0)))
as f (0)—oo. This should be compared with the value of E (NN, )=1+log(f (0))
for the black box rejection algorithm following Theorem 3.1.

For densities that are also known to be convex, a slight improvement In
E (N, ) 1s possible. See exerclse 4.5.
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4.5. Bounded monotone densities: inversion-rejection based on
Newton-Raphson iterations.

In thls sectlon, we assume that / 1s monotone on [0,00) and that f (0)<<oo.
It 1s possible that f has a large tall. In an attempt to automatically balance
E (N, ) agalnst E (N, ), and thus to avold the eternal problem of having to find a
good design constant, we could determine Intervals for sequentlal search based
upon Newton-Raphson Iteratlons started at z,==0. Recall the definitlon of the
hazard rate

_ _f(=)
h(z)= F@&)

If we try to solve F (z)==1 for z by Newton-Raphson lterations started at z,==0,
we obtaln a sequence z,<z,<z,< - - Wwhere

P (=) M h(a,)

The z,’s need not be stored. Obviously, storlng them could conslderably speed

up the algorithm.

Inversion-rejection algorithm for bounded densities based upon Newton-
Raphson iterations

Generate a uniform [0,1] random variate U .

X+~0,R«F(X), Z~f(X)

REPEAT
X*4_X+_1.“Z_R_ , Rt —F (X*), Zxef (X*)
IF U<R#*
THEN Accept «+— True
ELSE R—R* ,Z 2% , X X+
UNTIL Accept
REPEAT

Generate two independent uniform [0,1] random variates V ,W.
Y«X+(X*-X)V , T—WZ (Y is uniformly distributed on [X ,X*))
Accept —[T <Z+*] (optional squeeze step)
IF NOT Accept THEN Accept —[T < f (Y)]

UNTIL Accept

RETURN Y

One of the differences with the algorithm of the previous sectlon Is that In every
lteratlon of the Inverslon step, one evaluatlon of both F and f Is requlred 2s
compared to one evaluation of F . The performance of the algorithm 1s dealt with
In Theorem 4.3.
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IR

Theorem 4.3.
Let f be a bounded monotone denslty on [0,00) with mode at 0. For the

inverslon-rejection algorithm glven above,

o«

E(Ng)=E(N,)= Y (1-F(z;))

t =0

where O=1x,<z,<z,< - - - Is the sequence of numbers defined by
1-F (z,)

Ty 4y = Ty +TG_)— (n >0) .

If f 1s also DHR (has nonlncreasing hazard rate), then
1< E(N,)=E(N,) < 1+E(Xf (0)).

If f is also IHR (has nondecreasing hazard rate), then

1S BWN)=EWN,) < —.

Proof of Theorem 4.3.

EWN,) = 3 i (A-F (5 _))(1-F () = 3 (1=F (;)) ,

f=1 {==0

E(N,)= 35 f @)z 5) = 3 0-F (5;)) .

{ =0 t =0

When f 1s DHR, then

E (XS @) =f ©[0-Fe) ds = [+ 7 (@) dz 21,
0 0

h

For THR denslities, the inequallty should be reversed. Thus, for DHR densltles,
f (1-F (z)) dz
(e T
Y O-F(z;) <1+
=0 i=1
Z

= 1+ § f(l-F (z)) dz h(z;_,)

t=1z,,

Ty~

< 1+ f (0)(1-F (z)) dz = 1+E (X (0)) .
0

When f is IHR, then
i1

- [ h(z)dz

1-F (z; 1) = (1-F (z;))e
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< (1—F (ZL“- ))e =h (2, X% 1~2,)

1-F (z;)

€

Thus,

(o]

{ =0

DOFE)< Net =

§ =0

343

We have thus found an algorithm with a perfect balance between the two
parts, since E (IV, )=FE (N, ). Thils does not mean that the algorithm Is optimal.
However, In many cases, the performance Is very good. For example, 1ts expected

tlme 1s uniformly bounded over all IHR densitles. Examples of IHR denslties on
[0,00) are glven In the table below.

Name Density f Hazard rate A E(N,)=E(N,)
22
Halfnormal \/Z 2 <-*
bis e -1
a-1, -2
Gamma (2), ¢ 21 z_¢ < ¢
; T(e) e-1
Exponential e™? 1 c
e—1
Wetbull (a), ¢ 21 az® e’ az®? < ccl
z! e
Beta (a ,1), ¢ 21 az®?t (0<z<1) <
1-z° —e-1
=T
. a+1 . 1 a1
Beta (1,2 +1), a 20 (a +1)(1-2)* (0<z <1) 1-(1- )
1-z a+1
e¥-1 z
1 e e
Truncated extreme value, ¢ >0 —e p, < n
a e —

This 1s not the place to enter Into a detalled study of IHR densltles. It suffices to
state that they are an Important family Iln dally statistlcs (see e.g. Barlow and
Proschan (1965, 1975), and Barlow, Marshall and Proschan (1963)). Some of its
sallent propertles are covered In exerclse 4.8. Some entries for E (Ns ) In the table
glven above are explicltly known. They show that the upper bound of Theorem
4.3 Is sharp In a strong sense. For example, for the exponentlal denslty, we have

z, =n, and thus

E(N,)=E(N,)= 5 (-F(i) = S e~

t =0 § =0

€
e—-1

For the beta (1,a +1) density mentloned In the table, we can verlfy that

a

1

xn+l =

a+1

xn

’

a—+1
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and thus,
n

) (n20).

z, = 1-
n (a+1

Thus,

E(N,) = 53(-F(5;)) = 33 (1-2;)° !
§==0 { =0

. -1
o0 a t(a+1) 1 a+1

= ,.§0( a+1 ) = (-7 +1 )

This varles from 1 (a =0) to

(a oo) without exceeding

T Thus, once
c —
agaln, the Inequallty of Theorem 4.3 is tight.

For DHR densltles, the upper bound 1s often very loose, and not as good as
the performance bounds obtalned for the dynamic thinning method (sectlon

VI.2). For example, for the Pareto density S R— (where a >0 Is a parame-
(1+x )a “+1 a

—-a
= and E (N, )=[1—(1+-Z—) l . This

ter), we have a hazard rate h(z)= 1_‘:_

can be seen as follows:

(Za41+1) = (2, +1)A+2) ;

@+ =0+3)  (n20);
-1

EN,)= 3 (+L )_'a = [ —(1+1)"a]

{ =0

The last expresslon varles from 61 (a Too) to 2 (a =1) and up to oo as a |O.
e- v

4.6. Bounded monotone densities: geometrically increasing interval
sizes.

For bounded densitles, we can use a sequentlal search from left to right,
symmetric to the method used for unbounded but compact support densities.

There are two design parameters: £ >0 and 7 >1, and the consecutive Intervals
are

[0,8),[t ,tr),[tr ,tr2),...

A typlcal cholce Is { =1, r =2. General guldelines follow after the performance
analysls. Let us begin with the algorithm:
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Inversion-rejection method for bounded monotone densities based upon geometr-
ically exploding intervals

Generate a uniform [0,1] random variate U .
X0, X*t
WHILE U >F(X+*) DO
X=X | Xt e—r X
REPEAT
Generate two iid uniform [0,1] random variates, V., W .
Y X +(X#*-X)V (Y is uniformly distributed on [X ,X#*))

/(Y)
<<t
UNTIL W—f(X)

RETURN Y

Theorem 4.4.

Let f be a bounded monotone denslty, and let £ >0 and r >1 be constants.
Deflne

H(f)= flog+(-:§-) f(z) dz .
0

Then, for the algorithm given above,

Hy(f) <E(N)<2+Ht(f)

1+ log(r) — 8= log(r)

and

(e o]

1< tf 0)+[f (z) de < E(N,) < tf (0)+r .
t

Proof of Theorem 4.4.
We repeatedly wuse the fact that Ir "'lgx <tr' It and only If
i-1gxog(-””-)/1og(r )<i , i >1. Now,

tr* trt

E(N)—ff(x)dx+2(z+1)ff(x)dx—1+E ff(x)dx

i=1 tri-! i=1 tr*!

o log() H,(f)

t ——
= 2+'{ log(r) [ (@) de = log(r)
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and
| o0 108(7) H (/)
E(N;) 2 1+{ ) [ (z)de = 14— o
Also,
E(N,)=tf (0)+ % (trf—tri-0)f (tr'°Y)
i‘=lz y 7
<tf (0)+E_—’_1—t—3 f f(z)dz
z-—l
< tf O+,
and
E(N,y= tf (0)+E_t—-;——t—'-_ f f(x)d:z:
i=1ir — tri-d

=tf 0)+[f(z)dz > 1. ]}
t

We would like the algorithm to perform at a scale-Invarlant speed. This can

f()

Hx(f) .
< !
E(N) 2+1g(r)

E(N,) < 147

be achleved for ¢ ==

. In that case, the upper bounds of Theorem 4.4 read:

where
H#(f )= [log (zf (0))f (z) dz
: 0

Is the scale Invariant counterpart of the quantity H (f ) defined in Theorem 4.1.
H=*(f ) can be consldered as the normalized logarithmic moment for the density
f . For the vast majority of distributions, H#(f )<oo. In fact, one must search
hard to find a monotone denslty for which H*(f )=o0c. The tall of the density
must at least of the order of 1/(z log?(z)) as £ — o0, such as Is the case for

1
=)= (z +¢)log(z +e¢) (>0
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‘With little a prlori Informatlon, we suggest the cholece

r==2
1

== e
[ (0)

It 1s Interesting to derlve a good gulding formula for r. We start from the ine-
quallty

E(N,)+EN,) < a+r + 22
log(r )

’

which is mlnimal for the unlque solutlon r >1 for which rlog?(r )=H=*(f ). By
functlonal iteration started at r =H*(f ), we obtaln the crude estimate

— _H )
log?(H* ([ ))

For this cholce, we have as H* (f )—o0,

E(N,)+E(N,) < (1+0 (1));5;}% .

Example 4.3. Moment known.

A loose upper bound for H*(f )1s afforded by Jensen's Inequallity:
x

Hx(f) < flog+zf (0))f (z) dz < log(1+E (Xf (0)))
o]

where X 1s a random varlable with density f . Thus, the expected time of the
algorithm grows at worst as the logarlthm of the first moment of the distribution.
For example, for the beta (1,a +1) denslty of Example 4.1, thls upper bound is

log(1+ 2 i;) < log(2) for all ¢ >0. Thils Is an example of a famlly for which the
a

first moment, hence H#*(f ), s uniformly bounded. From this,

EWN,) < 2+%82) .
: log(r)

E(N,) < 1+r .

The ad hoc cholce r =2 makes both upper bounds equal to 3. [
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4.7. Lipschitz densities on [0,00).

The Inversion-rejectlon method can also be used for Lipschitz densitles J on
[0,00). This class Is smaller than the class of bounded densitles, but very large
compared to the class of monotone denslties. The black box method of sectlon 3
for thls class required knowledge of a moment of the distributlon. In contrast, the
method presented here works for all densltles f €Lip,(C) where only C must be
given beforehand. The moments of the distribution need not even exist. If the
positive half of the real line s partitioned by :

O=z, <o, <2, <" ,
then, 1t Is easlly seen that on [z, ,z, ],
[ (@) < min(f (2, 4+ C(2-2, )1 S (% 1))+ C (24 41-2)) ,

and
[(z) £ 2C(1-F (z,))

where the last Inequallty Is based upon Theorem 3.5. The areas under the respec-
tive dominating curves are ' :

2 2

E(N,) = L lca (f @ )+ (@ 4= (2, )+ (= ))2+-C—-A—"—
r —ngozc n n n-+1 2 n n+1/. 2

and

E(N,)= ¥ 2,/200-F (@),

n =0

where A, = z,_,~-7,. The value of E (N, ) depends only upon the partition, and
not upon the lnequalities used in the relection step, and plays no role when the
Inequalities are compared. Generally speaking, the second Inequality Is better
because 1t uses more Information (the value of F 1s used). Conslider the first ine-
quallty. To guarantee that E (IV, ) be finlte, for the vast majority of Lip, densl-
. tles we need to ask that

o0
A <00
n =0
But, since we require a valid partition of B, we must also have
. .
3,4, =00.
n =0

In particular, we cannot afford to take A, =§>0 for all n. Consider now A,
satlsfylng the conditions stated above. When A, ~n~% , then 1t s necessary that

de(—;—,ll. Thus, the Intervals shrink raplidly to 0. Conslder for example

A, ==

n

>0) .
—~ (20
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For this cholce, the Intervals shrink so rapldly that we spend too much time
searching unless f has a very small tall. In particular,

E(N)= S PX2> 3 A)

n =0 { =0

< 3 P(X>clog(n +2))

n =0

00 X
= Y P(e ° >2n+2)

n =0

X

< E(e*®).

A similar lower bound for E (/V;) exists, so that we conclude that E(N;)<oo If
and only If the moment generating function at L Is finlte, l.e.
[

X
m(—i—-)=E(e ‘Y < .

In other words, f must have a sub-exponential tall for good expected tlme.
Thus, Instead of analyzing the first Inequality further, we concentrate on the
second Inequallty.

The algorithm based upon the second Inequallty can be summarlized as fol-
lows: :

Inversion-rejection algorithm for Lipschitz densities

Generate a uniform [0,1] random variate U .
X+—0,R~F(X)
REPEAT

X#+ Next (X), R*«F(X*) (The function Next computes the next value in the
partition.)

IF U<R=*
THEN Accept «— True
ELSE R+R+* , X «X=
UNTIL Accept
REPEAT
Generate two independent uniform [0,1] random variates V', W,
Y—X+V(X*-X) (Y is uniformly distributed on [X,X*).
UNTIL WV2C(1-R)<f (Y)
RETURN Y
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There are three partitlonlng schemes that stand out as belng elther important or
practical. These are defilned as follows:

A. 1, = néfor some §>0 (thus, z, ,,~x, =6).

B. z,,, = tr" for some t>0,r >1, z, =1 (note that z,,, = rz, for all
n >1). The intervals grow exponentlally fast.

x . .
———" (thils cholce provides a balance between E (Ny)

C. xn+1=xn+ 20

and E (V, ).

Schemes A and B require addltional deslgn constants, whereas scheme C s com-
pletely automatic. Which scheme 1s actually preferable depends upon varlous fac-
tors, foremost among these the size of the tall of the distribution. By Imposing
conditions on the tall, we can derive upper bounds for E (N, ) and E (N, ). These
are collected In Theorem 4.5: ‘
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Theorem 4.5.

Let f €Lip,(C) be a density on [0,00). Let p >1 be a constant. When the
p-th moment exlsts, 1t Is denoted by 4, .

For scheme A,

max(l,-f;—l) < E(N,) < 1+—M6i ;
1
A/ 2p
§v2C max(l,——, Y22y < E(N,) < 6V2C (2+—2 b2y ) ).
1/'1,42 ) . p-1 6
In particular, If 6= at' then
’ VYo

1 1

E(N,)+E(N,) < 1+(80)* \/Ii+V8C (1)*
1

Vv8sC'’
1 1

E(N,)+E(N,) < 2+V8C ((1g)* +ny) < 24320 (u)* .

and when §=

For scheme B,

X
l0g+(_t')
E(N,) < 2+FE ;

log(r)

Vg TP 7H(r 1) )

tP1(rP1l)

E(N,) < V20 (t+

For scheme C,

| - N
E(N,)= E(N,) < V8C [V1-F(z) dz < p—‘il\/sc (4zp ) 2P .
0

At the same time, even If u,==0co, the following lower bound Is valld:

2Ch, < -;—\/éCf\/l—F(x) dzt <E(N,)=EWN,).
0
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Proof of Theorem 4.5.

In this proof, X denotes a random varlate with denslty f . Rewrite E(N;)
as follows:

E(N)—Eff(m)dm—fk dz .

n =00n

This can be obtained by an Interchange of the sum and the integral. But then,
by Jensen's Inequality and trivial bounds,

E(X)

max(1, ) < fmax(l,—)f (z) dz < E(N, )

< JE+f (2) do —-1+E(X)

o= B

Next,

EN,)= S V2Ca-F @n))s,

n ==0

so that by Chebyshev's Inequallty,

E(N,) o Vs
<
Wae S Drnt )

l
< 14— (uzp)2P+ 2 Ve
n—-no(nb)p

1
where n = [-}(u” )2P ] By a simple argument, we see that

, o0}
(o]
S n? < neP+fz? do

n=ng No

"P + of(P -1)

p-1
Combining this shows that

This brings us to the lower bounds for scheme A. We have, by the Cauchy-
Schwarz lnequallty,

E(N,) 00 o0
5\/5—0_ - n§0 3{/
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o0 .

Vi Vi)

in

n=0 \/[@ VT )

e e}

v
M8

I
18

My

1 fxf (z )max(l,%) dz

vV Mo
1 7

max(1,—)

vV Mo 6

v

A%

Also,

For scheme B, we have

E(N,) =1+ 3 (1=F (tr™))

n ==0

= 1+ ;; [/ (z)ds
Otr™

log+(-)t£) ]

log(r )

< 2+E

Also,

E(N,)= 3 v3C VIF(tr*)t(r-1)r" + vVaCt
: n =0

0 Vi
< V2Ct+v2C ¥, t(r—1)r"—t—p—%-
n =0 T

/ P=lfp _
— Vol (t ] r 1)).

tP-Y(rP11)
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Finally, we conslder scheme C. Conslder the graph of 1-v1-F (z ). Construct for

glven z, the trlangle with top on the glven curve, and base [z, ,z, ,,] at helght 1.
: 1-F (z,)
Its area Is —-—\/_—;—_n— The trlangle lles completely above the given curve because

the slope of the hypothenusa 1s vV2C , which Is at least as steep as the derlvative
of 1-V1-F at any polnt. To see this, note that the latter derlvative at z s

f(@) < ¢20(1—F(x))=\/z
2V1-F(z) — 2V1-F(z) 2

Thus, the sums of the areas of the trlangles Is not greater than the Integral

o0
JV1-F (z) dz. But this sum Is
.

o 1-F(z,) . E(N,) . E(N,)

E_o vV8C  V8C V&C
Also, twice the area of the trlangles Is at least equal to f\/l—-F () dz. The
. . o

bounds In terms of the various moments mentioned are obtalned without further
trouble. First, by Chebyshev’'s Inequality,

) o0 - \/ﬂ_— 1 1 L
[Vi-F@) dr < [min(,=—7E) do = (g, )* + PGk
0 0

Also, by the Cauchy_-Schwarz Inequality,

1 ococo

J [f de > ) 2f[fuf (v)dy do
0o z 0z

-looy

= (up) 2f [ dz yf (y) dy = /ii; .M
00

We observe that vV C X 1s a scale-Invarlant quantity. Thus, one upper bound

1
for scheme A (cholce b= ) and the upper bound for scheme C are scale-
v8(C

Invariant: they depend upon the shape of the denslty only. Scheme C is attrac-
tlve because no deslgn constants have to be chosen at any time. In scheme A for
example, the cholce of 6 Is critical. The geometrically Increasing interval sizes of
scheme B seem to offer little advantage over the other methods, because E (N, ) Is
relatlvely large. ’
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4.8. Exercises.

1.

Obtaln an upper bound for P (N, 2> 7)) In terms of 7 when equl-spaced Inter-
vals are used for bounded densltles on [0,00) as In Example 4.1. Assume first
that the 7 -th moment g, Is finlte. Assume next that E (e ™ )=m (¢ )< oo for
some t >0. The Interval width § does not depend upon j. Check that the
maln term In the upper bound Is scale-Invariant.

Prove Inequality D of Theorem 4.1.

Glve an example of a monotone density on [0,1], unbounded at O, with
H(f)<oo. '

Inequallties A through C In Theorem 4.1 are best possible: they can be
attalned for some classes of monotone densitles on [0,1]. Describe some
classes of densitles for which we have equality.

When f s a monotone convex denslty on [0,1], then the lnversion-rejection
algorithm based on shrinking intervals given In the text can be adapted so
that relection is used with a trapezoldal dominating curve jolning [X,f (X))

“and [rX,f (X )] where r >1 Is the shrinkage parameter used In the original

algorithm. Such a change would leave N, the same. It reduces E (/V, ) how-
ever. Formally, the algorithm can be wrltten as follows:

Inversion-rejection algorithm with intervals shrinking at a geometrical
rate

Generate a uniform [0,1] random variate U.
X1
"REPEAT

XX

r
UNTIL U >F(X)
Z—f (X)Zx~[ (rX)
REPEAT
Generate three independent uniform [0,1] random variates, U,V , W .

. Z+Z*
R«—mm(U,VZ_Z*)

Y«X(1+(r-1)R) (Y has the given trapezoidal density)
T—W(Z+(Z*-Z)R)
Accept «—([T <Z#] (optional squeeze step)
IF NOT Accept THEN Accept —(W < f (Y)]
UNTIL Accept
RETURN Y

Prove that E(N,)S%—(1+r). In other words, for large values of r, thls
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corresponds to an lmprovement of the order of 50%.
6. IHR densities. Prove the following statements:

A. If X has an IHR density on [0,00), then Xf (0) Is stochastically smaller
than an exponentlal random varlate, 1le. for all 2z >0,

P(Xf (0)>z)<e™®. Conclude that for r >0, E (X" )SLf(z(-i;—).
0
B. For r >0, EX")LI(r +1)Ef (X) (Barlow, Marshall and Proschan,
1963).

C. The convolution of two THR densltles Is agaln IHR.

D. Let Y,Z be Independent IHR random varlables with hazard rates hy
and hz. Then, {f hy,z 1Is the hazard rate of thelr sum,
hy +z Smin(hy ,hyz). :

E. Construct an IHR density which Is contlnuous, unbounded, and has
infinltely many peaks.

7. Show how to choose r and ¢ In the Inverslon-rejection algorithm with
geometrically exploding Intervals so as to obtaln performance that Is sub-
logarithmic In the first moment of the distribution In the following sense:

log(1+uJ (0))
EN)HEN,) L C ,
W+ EN) = Citcete +a7 ()
where u=F (X), C Is some universal constant, and X s a random varlable
with denslty f .

8. Bounded convex monotone densities. Glve an algorithm analogous to
that studied In Theorem 4.4 for thls class of densitles: its sole difference Is
that the relectlon step uses a trapezoldal domlnating curve. For this algo-
rithm, In the notation of Theorem 4.4, prove the lnequallty

EWN,) < ,-21-(t/ (0)47 +1) .

9. Prove that If A, ==

in the algorithm for Lipschitz densltles, then
X .
E (N,)<oco If and only If E (e °)<oo.

10. Suggest good cholces for { and r In scheme B of Theorem 4.5. These cholces
should preferably minimize E (N, )+E (V, ), or the upper bound for this sum
given In the theorem. The resulting upper bound should be scale-invariant.

11. Conslder a density f on [0,00) which Is In Lip ,(C) for some a€(0,1]. Using
the lnequality of Theorem 3.5 for such densitles, glve an algorithm generallz-
Ing scheme C of Theorem 4.5 for Lip, densitles. Make sure that
E(N,)=E(N,) and give an upper bound for E (IV,) which generalizes the
upper bound of Theorem 4.5.

12. The lower bound for scheme C In Theorem 4.5 shows that when u,=o0,
then E (N, )=occ. This Is a nearly optimal result, in that for most densitles
with finite second moment, E (N, )<oco. For example, If u,, . <oo for some
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€>0, then E (N, )<oco. Find densltles for which P <00, yet E (I, )==00.



