Chapter One
INTRODUCTION

1. GENERAL OUTLINE.

Random number generatlon has Intrigued sclentlsts for a few decades, and a
lot of effort has been spent on the creatlon of randomness on a deterministic
(non-random) machine, that ls, on the deslgn of computer algorithms that are
able to produce "random”™ sequences of Integers. This Is a difficult task. Such
algorithms are called generators, and all generators have flaws because all of
them construct the n-th number In the sequence in function of the n -1 numbers
precedlng 1t, inltiallzed with a nonrandom seed. Numerous quantlties have been
Ilnvented over the years that measure Just how "random” a sequence Is, and most
well-known generators have been sublected to rigorous statlstical testlng. How-
ever, for every generator, 1t s always possible to find a statistical test of a (possi-
bly odd) property to make the generator flunk. The mathematical tools that are
needed to deslgn and analyze these generators are largely number theoretic and
comblnatorial. These tools differ di‘astlcauy from those needed when we want to
generate sequences of Integers with certaln non-uniform distributlons, glven that
a perfect unlform random number generator Is avallable. The reader should be
aware that we provide him with only half the story (the second half). The
'assﬁmpt!on that a perfect uniform random number generator 1s avallable 1s now
qulte unreallstlc, but, with time, 1t should become less so. Having made the
assumption, we can bulld quite a powerful theory of non-uniform random varlate
generation.

The exlstence of a perfect uniform random number generator Is not all that
1s assumed. Statlsticlans are usually more Interested In continuous random varl-
ables than In dlscrete random variables. - Since computers are finlte memory
machlnes, they cannot store real numbers, let alone generate random variables
with a given denslity. This led us to the followlng assumptions:

Assumption 1. Owur computer can store and manlpulate real numbers.

Assumption 2. There exlsts a perfect uniform [0,1] random varlate generator,
l.e. a generator capable of produclng a sequence U,,U,,... of
Independent random varlables with a uniform distributlon on
(0,1].
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The generator of assumptlon 2 Is our fundamental bullding block. The
sequence of U;’s can be Intelligently manlpulated to give us random varlables
with specified distributions In R d, d -dimensional Euclldean space. Occaslonally,
we mention the effect that the filnite word-length of the computer has on the
manlpulated sequence. With the two assumptlons given above, we demand that
the random varlables obtalned by combining the U;’s have the exact distributlion
that was asked. Algorlthms or generators with thls property 1Is called exact.
Exact algorithms approach reallty If we use extended precision arlthmetic (some
languages allow users to work with integers of virtually unlimited length by link-
Ing words together In a llnked list). Inexact algorithms, which are usually algo-
rithms that are based upon a mathematical approxlmation of sorts, are forever
excluded, because nelther extended preclslon arithmetic nor improvements in the
baslc random number generator make them more exact.

A random varlate generation algorithm Is a program that halts with proba-
bility one and exlits with a real number.X. This X is called a random variate.
Because of our assumptlons, we can treat random varlates as If they were random
varlables! Note also that If we can produce one random varlate X, then we are
able to produce a sequence X ;,X,,... of independent random varlates distributed
as X (this follows from assumption 2). This facllltates our task a lot: rather than
having to concentrate on inflnlte sequences, we Just need to look at the propertles
of single random varlates.

Simple, easy-to-understand algorithms will survlve longer, all other things
being roughly equal. Unfortunately, such algorithms are usually slower than
thelr more sophisticated counterparts. The notlon of time Itself Is of course rela-
tlve. For theoretical purposes, 1t 1s necessary to equate time with the number of

"fundamental” operatlons performed before the algorithm halts. This leads to
our third assumption:

Assumption 3. The fundamental operations In our computer Include addition,
multiplication, dlvision, compare, truncate, move, generate a uni-
form random varlate, exp, log, square root, arc tan, sin and cos.
(This implies that each of these operations takes one unlt of time
regardless-of the slze of the operand(s). Also, the outcomes of the
operations are real numbers.)

The complexity of an algorithm, denoted by C, is the time requlred by the
algorithm to produce one random varlate. In many cases, C itself Is a random
varlable slnce 1t Is a functlon of U,,U,,... We note here that we are malnly
Interested In generating independent sequences of random variables. The average
complexity per random varlate In a sequence of length n is

1 n C
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where C,- Is the complexity for the ¢-th random varlate. By the strong law of
large numbers, we know that thls average tends with probabillity one to the
expected complexity, E(C). There are examples of algorithms with Infinite
expected complexity, but for which the probabillity that C exceeds a certain
small constant 1s extremely small. These should not be a priort discarded.
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We have now set the stage for the book. Our program Is ambitlous. In the
remalnder of thls chapter, we Introduce our notation, and deflne some distribu-
tlons. By carefully selecting sections and exerclises from the book, teachers could
use It to Introduce thelr students to the fundamental propertles of distributions
and random variables. Chapters II and III are cruclal to the rest of the book:
here, the princlples of Inversion, relection, and composition are explained in all
thelr generallty. Less unlversal methods of random varlate generatlon are
developed In chapter IV, All of these technlques are then applled to generate ran-
dom varlates with speclfic unlvariate distributions. These Include small famillles
of densltles (such as the normal, gamma or stable densitles), small families of
discrete distributlons (such as the binomlal and Polsson distributions), and fami-
lles of distributlons that are too large to be described by a finlte number of
parameters (such as all unlmodal densltles or all densitles with decreasing hazard
rate). The corresponding chapters are IX, X and VII. We devote chapter XI to
multlvarlate random varlate generatlon, and chapter VI to random process gen-
eratlon. In these chapters, we want to create dependence in a very speclfic way.
Thils effort 1s continued In chapters XII and XIII on the generation of random
subsets and the generatlon of random comblnatorial oblects such as random
trees, random permutations and random partitions.

We do not touch upon the applleations of random varlate generation in
Monte Carlo methods for solving varlous problems (see e.g. Rubinsteln,1981):
these problems Include stochastic optimization, Monte Carlo Integration, solving
llnear equatlons, decidlng whether a large number Is prime, etcetera. We will
spend an entlire sectlon, however, on the Important toplc of dlscrete event slmula-
tion, driven by the beauty of some data structures used to make the slmulation
more efflclent. As usual, we wlll not describe what happens inside some simula-
tlon languages, but merely give timeless principles and some analysis. Some of
this Is done In chapter XIV.

There are a few other chapters with speclallzed toplcs: the usefulness of
order statistics Is pointed out In chapter V. Shortcuts In slmulation are
highlighted In chapter XVI, and the Important table methods are gilven special
treatment ln.a chapter of thelr own (VIII). The reader will note that not a single
experlmental result s reported, and not one computer is explicitly named. The
issue of programming In assembler language versus a high level language is not
even touched (even though we think that assembler language lmplementations of
many algorithms are essential). All of this is done to Insure the universallty of the
text. Hopefully, the text wlll be as Interesting In 19985 as in 1985 by not dwelling
upon the shortcomlings of today’s computers. In fact, the emphasls Is plainly upon
complexity, the number of operations (Instructions) needed to carry out certaln
tasks. Thus, chapter XV could very well be the most lmportant chapter In the
book for the future of the subject: here computers are treated as bit manlpulating
machines. This approach allows us to deduce lower bounds for the time needed to
generate random varlates with certaln distributlons.

We have taught some of the material at McGlll Unlversity's School of Com-
puter Sclence. For a graduate course on the subject for computer sclentists, we
recommend the materlal with a comblnatorlal and algorithmlc flavor. One could
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cover, not necessarlly in the order glven, parts of chapters I and II, all of chapter
III, sectlons V.2 and V.3, selected examples from chapter X, all of chapters XII,
XIII and XV, and sectlon XIV.5. In addition, one could add chapter VIII. We
usually cover 1.1-3, II.1-2, II.3.1-2, I1.3.6, I1.4.1-2, III, V.1-3, V.4.1-4, V1.1, VIII.2-3,
X1I.1-2, X11.3.1, XII.4-5, XJI1.1, X111.2.1, X111.3.3, XII1.4-5, and XIV.5.

In a statlstlcs department, the needs are very different. A good sequence
would be chapters II, III, V, VI, VIL2.1-3, selected examples from chapters IX,X,
and chapter XII. In fact, this book can be used to Introduce some of these stu-
dents to the famous distributions In statistics, because the generators demand
that we understand the connections between many distributlons, that we know
useful representations of distributions, and that we are well aware of the shape of
densities and distribution functions. Some deslgns require that we disassemble
some dlstributions, break densltles up Into parts, find tight Inequalities for den-
sity functions.

The attentlve reader notlces very quickly that inequalltles are ublquitous.
They are required to obtaln efficlent algorithms of all kinds. They are also useful
In the analysls of the complexity. When we can make a point with inequallties,
we will do so. A subset of the book could be used as the basis of a fun reading
course on the development and use of inequallties: use parts of chapter I as
needed, cover sections I1.2, I1.3, 11.4.1, II.5.1, brush through chapter III, cover sec~
tions IV.5-7, Include nearly all of chapter VII, and move on to sections VIII.1-2,
IX.1.1-2, IX.3.1-3, IX .4, IX.6, X.1-4, XIV.3-4.

This book Is Intended for students In operations research, statlstics and com-
puter sclence, and for researchers Interested in random varlate generation. There
Is didactical material for the former group, and there are advanced technical sec-
tlons for the latter group. The Intended audlence has to a large extent dictated
the layout of the book. The introduction to probabllity theory In chapter I 1s not
sufficlent for the book. It Is malnly Intended to make the reader famlillar with
our notation, and to ald the students who will read the slmpler sectlons of the
book. A first year graduate level course in probabllity theory and mathematical
statistles should be ample preparation for the entlre book. But pure statisticlans
should be warned that we use qulte a few ldeas and "tricks” from the rich field of
data structures and algorithms in computer sclence. Our short PASCAL pro-
grams can be read with only passing famlliarity with the language.

Nonunlform random varlate generation has been covered In numerous books.
See for example Jansson (1966), Knuth (1989), Newman and Odell (1971),
Yakowltz (1877), Fishman (1978), Kennedy and Gentle (1980), Rubinstein (1981),
Payne (1882), Law and Kelton (1982), Bratley, Fox and Schrage (1983), Morgan
(1984) and Banks and Carson (1984). In additlon, there are qulte a few survey
articles (Zelen and Severo (1972), McGrath and Irving (1973), Patil, Boswell and
Friday (1975), Marsaglia (1978), Schmelser (1980), Devroye (1981), Ripley (1983)
and Deak (1984)) and bibllographles (Sowey (1972), Nance and Overstreet (1872),
Sowey (1978), Deak and Bene (1979), Sahal (1979)).
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2. ABOUT OUR NOTATION.

In this sectlon, we will briefly Introduce the reader to the different formats
that are possible for speclfylng a distributlon, and to some of the most Important
denslities In mathematical statistics.

2.1. Definitions.
A random varlable X has a density f on the real line If for any Borel set
A ) ’

PXeA)= [f (z) da.
A

In other words, the probabllity that X belongs to A 1Is equal to the area under
the graph of f . The distributlon functlon F of X Is defined by

Fz)=PX<z)= [[(y)dy, (s€R),

We have F'/(z )=f (z) for almost all z. The mean value of X Is
EX)= [z [ (z) dz ,

provided that this Integral exlists. The r-th moment of X Is deflned by E (X 7).
If the second moment of X is flnite, then Its variance 1s defined by

Var(X) = E(X-E(X))®) = E (X*-E*X) .

A mode of X, If 1t exists, Is a polnt at which f attains its maximal value. If ¢
Is an arbltrary Borel measurable functlon and X has denslty f, then
E(g (X))=——fg(m) f(z) dr . A p-th quantile of a distributlon, for p €(0,1), 1s

any polnt z for which F (z )==p. The 0.5 quantlle Is also called the medlan. It Is
known that for nonnegative X,

E(X)= [P(X>z)dz .
0

A distributlon Is completely specified when its distribution function is given.
We recall that any nondecreasing function F, right-contlnuous, with llmits O and
1 as z —-00 and z —oo respectively, is always the distribution function of some
random varlable. The distributlon of a random varlable Is also completely known
when the characteristic function

$(t)=E(e"™) ,terR ,

Is glven. For more detalls on the properties of distribution functions and charac-

teristle functlons, we refer to standard texts In probabillty such as Chow and
Telcher (1978).
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A random vector In R ¢ has a distrlbution function
. F(Z’l, - ,.’Ild)=P(XIS$1, S ,Xded).

The random vector (X, ..., X;) has a denslty f (z,, ..., z,) If and only if
for all Borel sets A of R ¢,

P(X, ..., X;)€A)=[[(2y, ..., 35) dz, - - dz, .
A

The characteristic function of thls random variable Is
Bty ..., 1) = E(eit;z\’ﬁ— c. +z't,;X4) (ty, ..., ty )ERd) )

The X;'s are called marginal random varlables. The marginal distribution func-
tlon of X, Is

Fiiz)=F(z,00,...,0) (z€R).

Its marginal characteristic function 1s
¢ (t)y=190(,0,...,0), (teER) .

Another important notlon Is that of Independence. Two random variables
X, and X, are Independent If and only If for all Borel sets A and B,

P(X,€A,X,EB)=P(X,EA) P(X,EB).

Thus, If F' is the distribution function of (X ,X,), then X; and X, are Indepen-
dent If and only if

F(z,,2,) = F (z,) Fy(z,), all(z 1’$2)€R2 ’

for some functions F'; and F,. Simllarly, If (X ,X,) has a denslty f, then X,
and X o are Independent If and only If this denslty can be written as the product
of two marginal densitles. Finally, X, and X, are Independent If and only If for
all bounded Borel measurable functions ¢, and g¢,:

E(9,(X))g9,X,) = E(9,(X,) E(g,X5,)).

In particular, the characteristic function of two Independent random variables Is
the product of thelr characteristic functions:

Btyts) = E (e "0 = B(e ™) B (e ") = ¢,(t,) #ults) -

All the prevlous observations can be extended without trouble towards d random
varlables X,, . . ., X,.
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2.2. A few important univariate densities.

In the table shown below, several lmportant densitles are listed. Most of
them have one or two parameters. From a random varlate generatlon point of
view, several of these parameters are unlmportant. For example, If X 1s a ran-
dom variable with a distribution having three parameters, a,b,c, and when
kX +! has a distribution with parameters ka +!,kb,c, then b 1s called a scale
parameter, and e 1s called a translation parameter. The shape of the distribu-
tlon Is only determlned by the parameter c: slnce ¢ Is invarlant to changes In
scale and to translations, 1t 1s called a shape parameter. For example, the normal

distribution has no shape parameter, and the gamma distribution has one shape
parameter.

Some univariate densities. :
f(z) E(X) Var (X) Mode(X) F(z)
z
2
d
Normal(u,0?) 7 o b _{o f(y) dy
CEN
1 ¢ 242
over
b b2 a-1)b S d
Gamma(a ,b ) ¢ ¢ (a-1) _.L () dy
z
1 xa—le~-b_
r(a)h*
(z >0)
1 1
Exponential()\) bY X Y 1-e™
Xe™>? (2 >0)
Cauchy(e) does not exist does not exist o] —;—+ —-:Farcl;an(i—)
o
m(z24-0%) - -
ab ab
—_— 2 b 1-—
Pareto(a ,b) a -1 (a >1) (a-2)(a-1) (e >2) _
Fl— (z >b )
: b L hsn | 1 d
Beta(e ,b) a+b (a+b)*(a+b+1) a+b-2 e
Pla+b)  a-1yy_, \b-1
NORO L
(z€l0,1))

A varlety of shapes can be found In this table. For example, the beta famlly
of densltles on [0,1] has two shape parameters, and the shapes vary from stan-
dard unimodal forms to J-shapes and U-shapes. For a comprehensive description
of most parametric famllles of densltles, we refer to the two volumes by Johnson
and Kotz (1970). When we refer to normal random varlables, we mean normal
random varlables with parameters O and 1. Simllarly, exponentlal random vari-
ables are exponential (1) random varlables. The unlform [0,1] density Is the den-
sity which puts 1ts mass uniformly over the Interval [0,1]:

f(@)=Tpyz) (z€R).
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Here [ 1s the Indicator functlon of a set. Finally, when we mention the gamma
(a ) denslty, we mean the gamma (a,1) denslty.

The strategy In this book Is to bulld from simple cases: slmple random vari-
ables and distrlbutions are random varlables and distributions that can easlly be
generated on a computer. The context usually dictates which random vartables
are meant. For example, the uniform [0,1] distributlon is slmple, and so are the
exponentlal and normal distributlons in most clrcumstances. At the other end of
the scale we have the difficult random variables and distributions. Most of this
book Is about the generation of random varlates with difficult distributions. To
clarify the presentation, It Is convenlent to use the same capltal letters for all
simple random varlables. We will use N, E and U for normal, exponentlal and
uniform [0,1] random varlables. The notations G and B are often used for
gamma and beta random varlables. For random varlables in general, we will
reserve the symbols X, Y, W, Z, V. '

3. ASSESSMENT OF RANDOM VARIATE GENERATORS.

One of the most difficult problems In random varlate generation is the cholce

of an approprlate generator. Factors that play an lmportant role In this cholce
include:

. Speed.

. Set-up (Initlalization) time.

. Length of the compiled code.

. Machine Independence, portabliity.
. Range of the set of applications.

. Simplicity and readability.

@ Ut h W

Of these factors, the last one is perhaps the most neglected In the literature.
Users are more llkely to work with programs they can understand. Five line pro-
grams are easlly typed ln, and the likellhood of maklng errors is drastlcally
reduced. Even packaged generators can have subtle bugs In thelr conception or
lmplementation. It Is nearly impossible to certify that programs with dozens, let
alone hundreds, of llnes of code are correct. So, we will often spend more time on
slmple algorithms than on sophisticated ultra-fast ones.

Subprograms for random varlate generation can be divided into three
groups: (1) subprograms with no varlable parameters, such as subprograms for
the normal (0,1) denslty; (2) subprograms with a finlte number of varlable param-
eters (these are typlcally for parametric classes of densities such as the class of all
beta densitles); (3) subprograms that accept names of other subprograms as argu-
ments, and can be applled for a wide class of distributions (the description of this
class is of course not dependent upon parameters).



10 I.3.ASSESSING GENERATORS

set-up time.

An example.

The admlssiblllty of a method now depends upon the set-up time as well, as
Is seen from this example. Stadlober (1981) gave the following table of expected

times per varlate (In microseconds) and size of the program (In words) for several
algorithms for the ¢ distribution:

Algorithm: TD TROU T3T
t a=3.5 65 66 78
t a=S5 70 67 81
t a==10 75 68 84
t a==50 78 69 88
t a=1000 79 70 89
s 255 100 83
u 12 190 0

Here t stands for the expected tlme, a for the parameter of the distribution, s
for the slze of the compiled code, and « for the set-up time. TD, TROU and
T3T refer to three algorithms In the lliterature. For any algorithm and any a,
the expected time per random varlate Is { +Xu where A€[0,1] 1s the fraction of
the varlates that required a set-up. The most Important cases are A=0 (one set-
up In a large sample for fixed a) and A==1 (parameter changes at every call).
Also, 1/X 1s about equal to the walting time between set-ups. Clearly, one algo-
rithm dominates another timewlse If { +X u considered as a functlon of A never
exceeds the corresponding function for the other algorithm. One can do this for
each a, and thils leads to qulite a complicated situation. Usually, one should
elther randomlze the entrles of { over varlous values of a. Alternatively, one can
compare on the basls of ¢, ,.=max, {. In our example, the values would be 79,
70 and 89 respectively. It Is easy to check that ¢{_ .. +Av Is minimal for TROU
when 0<A<9/178, for TD when 9/178<X<5/6, and for T3T when 5/8<\<1.
Thus, there are no inadmissible methods If we want to lnclude all values of .
For fixed values of X however, we have a glven ranking of the ¢ ..+ u values
and the dlscusslon of the Inadmissibility In terms of ¢ .+ u and s 1s as for the
distributlons without parameters. Thus, TD s Inadmissible in this sense for
A>5/6 or A<9/178, and TROU Is Inadmlssible for A>1/10. |



1.3.ASSESSING GENERATORS 9

3.1. Distributions with no variable parameters.

A frequently used subprogram for dlstributions with no varlable parameters:
should be chosen very carefully: usually, speed 1s very lmportant, while the length
of the complled code Is less crucial. Clearly, the initlalizatlon time s zero, and In
some cases 1t 1s worthwhlle to write the programs Iln machline language. This Is
commonly done for dlstributions such as the normal distribution and the
exponential distribution.

For infrequently used subprograms, 1t Is probably not worth to spend a lot
of tlme developing a fast algorithm. Rather, a slmple expedlent method wlll
often do. In many cases, the portablllty of a program Is the determining factor:
can we use the program ln dlfferent Installatlons under different clrcumstances?
Portable programs have to be written in a machlne-independent language. Furth-
ermore, they should only use standard Iibrary subprograms and be compller-
Independent. Optimlzing compilers often lead to unsuspected problems. Pro-
grams should follow the universal conventlons for giving names to varlables, and
be protected agalnst Input error. The calllng program should not be told to use
speclal statements (such as the COMMON statement In FORTRAN). Finally,
the subprogram ltself 1s not assumed to perform unasked tasks (such as printing
messages), and all conventions for subprogram llnkage must be followed.

Assume now that we have narrowed the competitlon down to a few pro-
grams, all equally understandable and portable. The programs take expected
time ¢; per random varlate where ¢ refers to the 1-th program (1<¢ £K). Also,
they require s; bytes of storage. Among these programs, the j7-th program lIs
sald to be inadmissible If there exists an ¢ such that ¢{; >¢; and s; >s; (with at
least one of these inequalities strict). If no such ¢ exlsts, then the j-th program
Is admissible. If we measure the cost of the 7-th program by some function
W(t; ,s; ), Increasing In both its arguments, then 1t Is obvious that the best pro-
gram 1s an admIissible program.

3.2. Parametric families.

The new Ingredlent for multl-parameter famillies Is the set-up time, that ls,
the time spent computing constants that depend only upon the parameters of the
distribution. We are often in one of two situations:

Case 1. The subprogram 1s called very often for fixed values of the parameters.
The set-up time Is unimportant, and one can only galn by lnitlalizlng
as many constants as possible.

Case 2. The parameters of the distribution change often between calls of the
subprogram. The total time per varlate Is definitely Influenced by the



I.3.ASSESSING GENERATORS 11

Speed versus size.

It s a general rule In computer sclence that speed can be reduced by using
longer more sophlsticated programs. Fast programs are seldom short, and short
programs are llkely to be slow. But It 1s also true that long programs are often
not elegant and more error-prone. Short smooth programs survive longer and are
understood by a larger audlence. Thls blas towards short programs wlll be
apparent In chapters IV, IX and X where we must make certain recommendatlons
to the general readership. i}

4. OPERATIONS ON RANDOM VARIABLES.

In this sectlon we brilefly indicate how densitles and distribution functlons
change when random varlables are comblned or coperated upon in certaln ways.
This will allow us to generate new random variables from old ones. We are spe-
clally Interested In operations on slmple random varlables (from a random varlate
generatlon polnt of view) such as unliform [0,1] random varlables. The actual
applications of these operations In random varlate generation are not discussed In
this Introductory chapter. Most of thls material Is well-known to students in
statistics, and the chapter could be skipped without loss of continuity by most
readers. For a unlfled and detalled treatment of operations on random varlables,
we refer to Springer(1979).

4.1, Transformations.

Transformations of random variables are easlly taken care of by the follow-
Ing devlice:

Theorem 4.1.

Let X have distributlon function F, and let A:R —B be a strictly increas-
Ing function where B 1Is elther B or a proper subset of R . Then A (X)) Is a ran-
dom variable with distribution functlon F (A ~}(z)).

If F has density f and 27! Is absolutely contlnuous, then s (X') has denslty
(h~YY(z) f (h~Yz)), for almostallz .
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Proof of Theorem 4.1.
Observe first that for arbltrary «,

P(h(X)<z)=PX <h™ (=)= F(h™(2)).

This 1s thus the distribution function of A (X ). If this distribution function s
absolutely continuous In z, then we know (Chow and Telcher (1978)) that A (X)
has a denslty that 1s almost everywhere equal to the derlvative of the distribution
function. This Is the case for example when both F and h~! are absolutely con-
tlnuous , and the formal derivative Is the one shown In the statement of the
Theorem. Ji

Example 4.1. Linear transformations.

If F 1s the distribution functlon of a random variable X, then ¢X +b has
distribution function F ((zx-b)/a) when a >0. The corresponding densitles, If

they exist, are f (z) and —l—f (x-—b ). Verlfy that when X s gamma (a,b) dis-
a a

tributed, then ¢X 1s gamma (a,cb), all ¢ >0. |}

Example 4.2. The exponential distribution.
When X has distribution functlon F' and A>0 Is a real number, then
-——;\-logX has distribution function 1-F (e =% ), which can be verified directly:

P(—%logX <z)=P(X>eM)=1-F(e™) (z>0).

In particular, If X is uniform [0,1], then —-—;\—logX Is exponential (A\). Vlce versa,
when X 1s exponential (\), then e % 1s unlform [0,1]. [ |
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Example 4.3. Power transformations.

When X has distrlbutlon function F and density f, then X? ( p>01s a

real number, and the power 1s defined as a slgn-preserving transformation ) has
1

distribution function F (z ?) and denslty

iy o1
— P f (xp)'.
p

Example 4.4. Non-monotone transformations.

Non-monotone transformatlons are best handled by computing the distribu-
tlon functlon first from general principles. To lllustrate this, let us conslder a
random varlable X with distribution function F and density f . Then, the ran-
dom varlable X2 has distrlbution function

P(X?<z)=P(|X|<Vz )=F(\z }-F(-Vz ) (z>0)

and density

1 [ (Vo )+ (VT )
2

Vo

In partlcular, when X 1s normal (0,1), then X? 1s gamma distributed, as can be
seen from the form of the density

-—\/1—=2\}_.(e Pte %)= \/57—rx 2e 2 (z>0).

The latter density 1s known as the chi-square density with one degree of freedom
(1n shorthand: x,%). W

Example 4.5. A parametric form for the density.

Let X have density f/ and let A be as In Theorem 4.1. Then, putting
r=h(u) and y=/ (u)/h'(uv), where y stands for the value of the denslty of
h(X) at z, and ¥ and z are related through the parameter u, we verify by
ellmlnation of u that

y = /[ (h"Nz))/ KL (z)).
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This 1s equal to [ (A~} x))h~Y(z ), which was to be shown. Thus, the parametric
representation In terms of u glven above Is correct, and wlll give us a plot of the
denslty versus z. Thls Is particularly useful when the Inverse of h 1s difficult to
obtaln In closed analytical form. For example, when X Is uniform [0,1}, then for
a,b >0, aX +bX?® has a denslty with parametric representation

1

z = au+bud,y -—
a +3bu

(0<au +bu3<1) .

By elimlnation of u, we obtaln a slmple formula of z In terms of y:

1 1 ,2a 1
== —_—a — —+_._ .
* V y 3b( 3 3y)

The plot of y versus z has the following general form: 1t vanlshes outside [0,1],
and decreases monotonically on this Interval from y=L at £ =0 t0 a nonzero
a

0
value at z =1. Furthermore, 51 at ¥ =0 (l.e. at £ =0), is 0, so that the shape
x

of the denslty resembles that of a plece of the normal density near 0. i

Let us now look at functions of several random varlables. We can obtaln
many distributions as relatively uncomplicated functions of slmple random varl-
ables. Many cases can be handled by the following d-dimenslonal generallzation
of Theorem 4.1:

Theorem 4.2.

Let X have a continuous density / on R¢ and let h:R¢ =R ¢ be a one-
to-one and onto mappling to T, the image of S, the support set of f , under h.
Thus, the Inverse of the transformation Y =h (X) exists: X =hA~Y(Y )=¢(Y). If

we write y =(y,, ..., yg) and g=(g,, . . ., g4 ), then If the partlal derlvatives
9i5 = exist and are continuous on T, Y has density
Yy
F@) [J] (weT),

where J Is the Jacoblan of the transformation and is defined as the determinant
of the matrix

9u T 94




I1.4.OPERATIONS ON RANDOM VARIABLES 15

Example 4.6. The t distribution.
We wlll show here that when X Is normal (0,1) and Y 1Is Independent of X
a
and gamma (;,2) distributed (this is called the chl-square dlstributlon with a

degrees of freedom), then

Z=X/\/:a):-

1s ¢t distributed with a degrees of freedom, that Is, Z has denslty
a+1 '

rty
a a+1 (z€R) .
I‘(;)\/;r? (1+£ai) >

What one does In a sltuation llke this Is "Invent” a 2-dimensional vector random
variable (for example, (Z,W)) that Is a function of (X,Y ), one of whose com-
ponent random varlables Is Z. The obvious cholce in our example 1s

1mxin/Z
a
W=Y
w
The Inverse transformatlon s determlned by X =7 — Y=W. This

_ w
inverse transformation has a Jacoblan ~— where we use z,y,2,w for the run-
a

ning values that correspond to the random variables X,Y ,Z ,W. Thus, the den-
sity of (Z,W) 1s :

_we? e w
ce 2w? ¢ 2 i
a
where
1
¢ = —— (w>0,z€R)
. =
r(=)22%2nr
()

1s a normallzation constant. From a Jolnt density, we obtaln a marginal density

by taking the Integral with respect to the non-involved varlables (In thls case
a +1 2

with respect to dw) . In w, we have for fixed z a gamma ( , 5 ) den-
2 1+z%/a
slty tlmes —-C—-. After Integration wlth respect to dw, we obtaln
va
c
—=T"(a)*
Va

where o and f are the parameters of the gamma denslty glven above. Thls Is
precisely what we needed to show. .
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4.2. Mixtures.

Discrete mixtures.

Let Y be a positlve Integer valued random varlable, and, given that Y =1,
let X have density f;. Then the (unconditional) density of X s

SIP(Y=i)[(z).
=1

This device can be used to cut a glven density f up Into slmpler pleces f,- that
can be handled qulte easlly. Often, the number of terms In the mixture is finite.
For example, If f 1s a plecewlse linear density with a finite number of break-
polints, then it can always be decomposed (rewritten) as a finite mixture of uni-
form and trlangular denslties.

Continuous mixtures.

Let Y have denslty ¢ on R, and glven that Y =y, let X have density [y
(thus, y can be considered as a parameter of the density of X'), then the density
f of X 1s given by

f @)= [fy(z)g(y) dy .

As an example, we conslder a mixture of exponential densitles with parameter Y
Itself exponentlally distributed with parameter 1. Then X has density

J(z)= fye¥e? dy
Y

fyc (z +1)7? dy

S S
(z +1)

I

(z >0) .

Since the parameter of the exponential distribution Is the inverse of the scale.
parameter, we see without work that when E [,F, are Independent exponential
random varlables, then E ,/E, has density 1/(z +1)? on [0,00).

Mixtures of uniform densities.

If we conslder a mixture of uniform [0,y ] densitles where y 1Is the mixture
parameter, then we obtaln a density that is nonincreasing on [0,00). The random
varlables X thus obtalned are distributed as the product UY of a unlform [0,1]
random varlable U and an arbltrary (mixture) random variable Y. These dis-
tributions will be of great Interest to us since U Is the fundamental random
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variable In random varlate generatlon.

4.3. Order statistics.

If U, ..., U, are lid uniform [0,1] random varlables, then the order statls-
tics for thls sample are U(l), Co., U(,,), where
Vs U s - = Un)
and Upy, ..., Ugpy Is a permutation of U, ..., U,. We know that
(Uy, ..., U,) Is unlformly distributed In the unlt cube [0,1]*. Thus,

Uiy oo o, Uryy) 1s uniformly distributed In the simplex S, :
(1) (n) .
Sn={($1,.-.,.’En)20<$1<$2<-'-<2;n<1}“

Theorem 4.3. :
The Jolnt denslty of (Uyy, . . ., Uyy) s
ntlg (z, ...,2,).
The 1-th order statistic U, has the beta denslty with parameters ¢ and n—1+1,
l.e. 1ts denslty Is '

I'(n +1)

TG0 (i +1) ' M1-z )" (z€[0,1)) .

Proof of Theorem 4.3.

The first part Is shown by a projection argument: there are n! polnts In
[0,1]® that map to a glven polnt In S, when we order them. This can be formal-
lzed as follows. Let A be an arbitrary Borel set contalned In S,. Wrltlng

T(y< ' -+ <Z(y) for the ordered permutation of z,, . . . , z,, We have
fdz, - dz,
A
L= E f d.’l;l cot d:z:,,
7T A ,(z1=x,,(1), ey :,=Z,(,,))
(0=0(1), . . ., o(n )is a permutatlonof 1, . . ., n)

= S [dugy - dzay
g A

A
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The first part of the Theorem follows by the arbitrariness of A. For the second
part, we choose z In [0,1], and compute the marginal density of U(f) at z by
Integrating the denslity with respect to all variables z; g #z This ylelds

Zg z1 1
n!f---ff--'fdxn"'dx,-+1dx,~_1-~-dx1.
Y 0Oz Fa-1

This gives the beta density with parameters 1 and n—4 +1. .

Of partlcular Importance will be the distributlon of max(U,, . .., U, ): the
distribution function s easlly obtalned by a dlrect argument because
P(max(U,, ..., U,)<z) (z€0,1])
= P(U,<z)- - P(U,<z)

xn

= P(U,<z")
1
= P(U,"<z).

Thus, the distribution function 1s 2" on [0,1], and the density 1s nz"~! on [0,1].
We have also shown that max(U,, . . ., U, ) Is distributed as U,*/".

Another Important order statlstlec 1s the median. The medlan of
Uy oo, Ugpir 15 Uy We have seen In Theorem 4.3 that the denslty Is

Lnt) -z (zea)).
n!

Example 4.7.

I U(l),U(Q),U(a) are the order statlstics of three Independent uniform [0,1]
random varlables, then thelr densitles on [0,1] are respectively,

3(1—2: )2 ’ ‘
8z (1-z)
and

3z?
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The generallzatlons of the previous results to other distributlons are stralght-
forward. If X, ..., X, are lld random varlables with density f/ and distribu-
tlon functlon F, then the maximum has distributlon function F". From
Theorem 4.3, we can also conclude that the ¢ -th order statlstlc X ;y has denslty

n! T-1 n—i
mF(z) A-F@)*"™" f(z).

4.4. Convolutions. Sums of independent random variables.

The distribution of the sum S, of n random varlables X, ..., X, Is usu-
ally derlved by one of two tools, convolutlon Integrals or characteristic functions.
In this sectlon, we will write f.,F;,¢; for the density, distrlbutlon function and
characteristlc function of X;, and we will use the notation [ ,F,p for the
corresponding functions for the sum S, . In the convolutlon method, we argue as
follows:

Flz)=PX,+ - +X,<7z)
= [T1 /i) Fale=y1= " ~v-) Ty -

i<n i<n

Also, .

f@)y=[T17:iW) fale=ys— " -vn_y) TIdy; .
f<n i<n

Except In the simplest cases, these convolution Integrals are difficult to compute.
In many Instances, 1t s more convenlent to derlve the distribution of S, by
finding 1ts characterlstic function. By the Independence of the X,- 's, we have

o(t) = E.(evz't(Xx+"‘+Xn))
— ﬁE(ez'tX,)

i=1

IT ;).

j=1

I

If the X;'s are 11d , then ¢ = ¢,".

Example 4.8. Sums of normal random variables.

First, Wegshow that the characteristle functlon of a normal (0,1) random
varlable 1s e * /2, To see thls, note that 1t can be computed as follows for t ER :

L ity-y%/2
e d
f var y
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I

~t%/2 1 _(y-it)y2

e —¢ d
f 27 y

et/2

From the definltlon of the characteristlc functlon we see that If X has charac-
terlstic functlon ¢(t), then aX +b has characteristic function e ' ¢(at). Thus, a
normal (u, 02) random varlable has characteristic function

e't4 d(ot) .
It X; Is normal (u,;,0;2), then S, has characteristlc function
ﬁ ¢ it e %2/2
J=1
;- o
= g 1=l e J=l1

?

which is the characterlstlc functlon of a normal random varlable with parameters

S, and 330,% M

Example 4.9. Sums of gamma random variables.

In this example too, it 1s convenlent to first obtain the characteristic func-
blon of a gamma (a,b ) random varlable. It can be computed as follows:

yole- -y /b "
f e dy  (by definition )
0 I‘(a )b ¢
a-1,-y(1-sth)/b
— j‘ y_ ¢ dy
0 I'(a)b*® |
7 a-1 -—z/b .
= (use z=y(1-1th))
o (1-1tb )*T(a )b ®
— 1
(1-4tb )®
Thus, If X, . . ., X, are Independent gamma random varlables with parameters

a; and b, then the sum §, s gamma with parameters Sta; and b. ]

It 1s perhaps worth to mention that when the X, 's are 11d random varlables,
then Sn , properly normallzed, is nearly normally distributed when n grows large.
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If the distributlon of X'; has mean p and varlance ¢>>0, then (S, -n u)/(cVn )
tends In distributlon to a normal (0,1) random varlable, l.e,

1
Iilm P
Jm (of‘ = o

This Is called ‘the central llmit theorem (Chow and Telcher, 1978). This wlll be
explolted further on in the deslgn of algorithms for famlllies of distributlons that
are closed under addltlons, such as the gamma or Polsson familles. If the varl-
ance ls not filnite, then the llmlt law 1s no longer normal. See for example exer-
clse 4.17, where an example 1s found of such non-normal attraction.

e*/? | alg .

4.5. Sums of independent uniform random variables.
In this sectlon we consider the distribution of

n
Z a; Uz"

t=1

where the a;’s are posltlve constants and the U;'s are Independent uniform [0,1]
random varlables. We start with the maln result of this sectlon.

Theorem 4.4.

. .
The distributlon function of Y] a; U; (where a; >0, all ¢, and the U;'s are
=1
Independent uniform (0,1} random varlables) is given by

Fz)= - ,(‘”+n“2(x“ai)+n+.§‘(x-a,-—a]-)+"-- ).
1 ] 7 . .

a6y a,n!

Here (.),. Is the positive part of (.). The density Is obtalned by taking the derlva-
tlve with respect to z .

Proof of Theorem 4.4,

Conslder the simplex S formed by the origin and the vertlces on the n coor-
dlnate axes at dlstances z /a,, ..., z/a,, where 2 >0 Is the polnt at which we
want to calculate F (z ). Let us define the sets B; as

= [0,00)" "1 X (1,00) X [0,00)" ~*
where 1<7 <n. Note now that the first quadrant minus the unit cube [0,1]" can
be decomposed by the Inclusion/excluslon principle as follows:
[0,00)" —-[0,1]"

= SBi- 5 BiNBj+
B3
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Now, slnce F(z) == area (SN[0,1]") = area (S }-area (S N([0,00)" -[0,1]")), we
obtaln

F(z) = area (S )—Z area (SNB;)+ 3 area (SNB; NB; )~

15
This Is all we need, because for any subset J of 1, .. ., n, we have
(x-370;),"
area (SN B;) = i€l
ieJ a, - a,n!

This concludes the proof of Theorem 4.4. .

It Is Instructive to do the proof of Theorem 4.4 for the speclal case n =2,
and to draw the slmplex and the varlous sets used In the geometric proof. For
the Important case ¢ ;==a,= * - - =a, =1, the distribution function is

Flz)= == (a, = (P @0+ (5) 2,0 )

In partlicular, for n =2, obtalning the denslty by taking the derivative of the dis-
tributlon function, we have

f(z)=1x,-2(x-1),+(x-2),

0 If z <0

z if 0<z <1
2-z 1<z <2"
0 If2<z

In other words, the density has the shape of an Isosceles trlangle. In general, the
denslty of U,+U,+ - -+ +U, conslsts of pleces of polynomlals of degree n-—1

with breakpoints at the Integers. The form approaches that of the normal den-
sity as n —oo.
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4.6. Exercises.

1.

If h 1s strictly monotone, A’ exists and Is contlnuous, ¢ 1s a given denslty,
and X s a random varlable with denslty A’'(z )g (h (z)), then h(X) has den-
sity g . (This Is the Inverse of Theorem 4.1.)

It' X has denslty 1/(z2Vrwlogz ) (z >1), then v2logX Is distributed as the
absolute value of a normal random variable. (Use exercise 1.)

If X I1s a gamma (—1-,1) random varlable, f.e. X has denslty

e”® /Vmz (z >0), then V2X 1Is distributed as the absolute value of a nor-
mal random varlable. (Use exerclse 1.)

Let A be a d Xd matrix with nonzero determinant. Let Y =AX where
both X and Y are R ¢-valued random vectors. If X has denslty f,then Y
has density

S (A7) |detd™'| (yER?).

]

Thus, If X has a unlform denslty on a set B of R%, then Y Is unlformly
distributed on a set C of R¢. Also, determlne C from B and A .

If Y 1s gamma (a,1) and X Is exponential (Y), then the density of X Is
[(z)= (

z+1)t*+!

¢ (z >0) .

A random varlable Is sald to have the F distribution with ¢ and b degrees
of freedom when its density Is

2

2
f(x)=-—@—;—_n—, (z >0).

(1+—“b£) 2

/3

a;—b )(%)2/I‘(—§-)I‘(—;-). Show that when X and
Y are Independent chl-square random varlables with parameters ¢ and b

respectively, then (%f—)/(%,-) 1s F(a,b). Show also that when X 1s F (a,b),

Here, ¢ 1s the constant I'(

then —;z,- is F(b,a). Show finally that when X 1s ¢-distributed with a

degrees of freedom, X? 1s F(1,a). Draw the curves of the densltles of
F (2,2) and F (3,1) random varlables.

When N, and N, are Independent normal random varlables, the random
varlables NV *+N,? and N /N, are Independent.

Let f De the trlangular denslty defilned by

1—-5 o<z <2
[ @)=,

elsewhere
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10.

11.

12.

13.
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When U, and U, are Independent uniform [0,1] random varlables, then the
following random varlables all have density f :

2 min (U,,U,);
2| U+U,1]

2(1-/T) .

n
Show that the density of the product J] U; of n 11d uniform [0,1] random
: §=1
variables 1s

1. m-1 _
log(—;) 0Lz <1

(n-1)

f@)y =,

elsewhere -’

When X Is gamma (a,1), then 1/X has density
1

1 a+1 z

f@)=(3)

e
I'(a)

(z >20).

k
Let. Y = T]X; where X, ..., X, are 1ld random varlables each distri-
=1 .
buted as the maximum of n 1d uniform [0,1] random variables. Then Y has
denslty

k
n n-1 k-1
zT)= z -log(z 0<z<1).
f @)= Fosalos@)t <z <)
(Rider, 1955; Rahman, 1964).
Let X,, ..., X, be lld uniform [-1,1] random varlables, and let Y be equal
to (min(X',, . . ., X, )+max(X,, . .., X, ))/2. Show that Y has density

f@)=20-1a [P (2] <),

and varlance —2 (Neyman and Pearson, 1928; Carlton, 1946).
(n +1)(n +2)

We say that the power distribution with parameter ¢ >—1 Is the distributlon
corresponding to the density
f(z)=(a+1)z° o<z <1).

IrTX 10+« are 11d random varlables having the power distribution with parame-
ter a, then show that

A. X,/X, has denslity
atl ,

o<zr<1i
> <

SH1 o etn) gy,
> <
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14.

15.

18.

17.

18.

19.

n
B. JIX; has density
i=1
(a +1)"
I'(n)

n-1

1
x“(log;) o<z <1) .

(Springer, 1979, p. 161).

The ratlo G, /G, of two Independent gamma random varlables with param-
eters (a,1) and (4,1) respectively has density

1 gt
B(a,b) (1+z )2+

(z >0) .

Here B(a,b) 1s the standard abbreviation for the constant In the beta
Integral, l.e. B(a,b) =TI'(a )'(6)/T'(a +b). This Is called the beta density of
the second kind. Furthermore, G,/(G,+G;) has the beta denslty with
parameters ¢ and b.

Let U, ...,U, be 1ld uniform [0,1] random varlables. Show that
(U, +U,)/(Us+U)) has density
KE2 o<z <=
8 2
8 35 2 + L <o <1
3 2 33?2 2% 2~
2 3
=24 2 2 1<z <2
3 6 3z? 223
7 2<z
6z3

Show that N N,+N 3N, has the Laplace density (l.e., %e“ z I), whenever

the IV, 's are 11d normal random varlables (Mantel, 1973).

Show that the characteristic function of a Cauchy random variable is eIt | .
Using thils, prove that when X ,, . . . , X, are 1ld Cauchy random varlables,

n
then L 3 X; 1s agaln Cauchy distributed, l.e. the average Is distributed as
n

§=1
Xlo
Use the convolution method to obtaln the densitles of U,+U, and
U,+U,+U, where the U;'s are 1id uniform [-1,1] random varlables.

In the oldest FORTRAN subroutine librarles, normal random varlates were
generated as

1 n 1
X, == ———— (U;-=)
" Vn/3 J-{‘\l 72
where the UJ- 's are 11d uniform [0,1] random varlates. Usually n was equal to
12. This generator 1s of course Inaccurate. Verify however that the mean

and varlance of such random variables are correct. Bolshev (1959) later
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20.

21.
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proposed the corrected random varlate
Y =X P S—
100

Deflne a notlon of closeness between densities, and verify that Y s closer to
a normal random varlable than X..

Let Uy, ..., U,,V,, ..., V, belld uniform [0,1] random variables. Define
X=max(U,, ..., U,), Y=max(V,, ..., V, ). Then X /Y has density
ezt 0<z<1
f@y=],
21
™+l =

nm
+m
Show that If X <Y <Z are the order statistics for three 11d normal random
variables, then
min(Z-Y,Y-X)
zZ-X

has density

f(z)=

where ¢ = (Murty, 1955).
n

3v3

—=Yo ., (0<e<).
n(1-z +z2) 2

See e.g. Lieblein (1952).



