Chapter Five
UNIFORM AND EXPONENTIAL SPACINGS

1. MOTIVATION.

The goal of thls book 1s to demonstrate that random varlates with varlous
distributions can be obtalned by cleverly manipulating lid uniform (0,1} random
varlates. As we will see In thls chapter, normal, exponential, beta, gamma and t ~
distributed random variates can be obtalned by manipulation of the order statlis-
tles or spacings defined by samples of 1id uniform [0,1] random varlates. For
example, the celebrated polar method or Box-Muller method for normal random
varlates will be derlved In this manner (Box and Muller, 1958).

There Is a strong relatlonshlp between these spacings and radially symmetric
distributlons 1n R d, so that with a 1lttle extra effort we will be able to handle the
problem of generating uniform random varlates in and on the unit sphere of R 4,

The polar method can also be consldered as a speclal case of a more general
method, the method of deconvolution. Because of thils close relationship 1t will
also be presented In this chapter.

We start with the fundamental propertles of uniform order statistics and
unlform spaclngs. This material Is well-known and can be found In many books
on probablilty theory and mathematical statistics. It 1s collected here for the con-
venlence of the readers. In the other sectlons, we wlll develop varlous algorithms
for unlivariate and multivariate distributions. Because order statistics and spac-
ings Involve sortlng random varlates, we will have a short sectlon on fast
expected time sorting methods. Just as chapter IV, this chapter Is highly special-
1zed, and can be skipped too. Nevertheless, 1t Is recommended for new students In
the flelds of simulation and mathematical statistics.
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2. PROPERTIES OF UNIFORM AND EXPONENTIAL SPACINGS.

2.1, Uniform spacings.

Let Uy, ..., U, be lid uniform [0,1] random varlables with order statistics
Unp<Ui< : - SU¢) The statistlcs S; defined by

S" == U(i)_U(t'—l) (152‘ S'n +1)

where by convention U (0=0, U (n +1)=1, are called the unlform spaclngs for thls
sample.

Theorem 2.1.
(84 ..., 8,;)1s uniformly distributed over the simplex

n
A, —.—.:{(xl, .. .,mn):x’.ZO,Exisl} .

§ =1

Proof of Theorem 2.1.
We know that Uy, . . ., U,y Is uniformly distributed over the simplex
B, ={(z, ..., 2,):0<2,< - <g, <1}.
The transformatlon
§1= U,

S = Uy—U,

Sp = Up—Up_,
has as Inverse
U, =38,

Uy == 8118,

Uy = §1+8,+ - 0+,

and the Jacoblan of the transformation, l.e. the determinant of the matrix formed
8s. .
by 3 — 1s 1. This shows that the denslty of S v - -+, S, 1s uniformly distri-
u .

j
buted on the set A, . JJ}
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Proofs of thls sort can often be obtalned without the cumbersome transfor-
matlons. For example, when X has the uniform density on a set A CR ¢, and B
Is a llnear nonsingular transformation: R ¢ —R ¢, then Y =BX 1s uniformly dis-

tributed on BA as can be seen from the followlng argument: for all Borel sets
CCR¢Y,

P(Y€EC)= P(BXEC) = P(X€B™'C)
f dz [ dz
__(BUC)NA  __ CN(BA)

[ dz [ dz
A BA

Theorem 2.2.

S, ..., & 41 1s distributed as
E, En 11
n+1 7
3 Ei 3 E;
=1 =1
where £, . . ., E, ., Is a sequence of 11d exponentlal random varlables. Further-
more, if G, ., Is Independent of (S, ..., S, ;) and Is gamma (n +1) distrl-
buted, then
S$1Gnsr -+ S 1Gra
Is distributed as £ ,E,, . .., E, ,,.

The proof of Theorem 2.2 Is based upon Lemma 2.1:

Lemma 2.1.

For any sequence of nonnegative numbers z,, . . ., I, ,, We have
n+1 n
P(Sl>$1, Cee Sn+1>xn+1) = [1—2 .'L',-
i=1 +

Proof of Lemma 2.1.

n-+1
Assume without loss of generallty that Y z; <1 (for otherwise the lemma ls

=1
obviously true). We use Theorem 2.1. In the notation of Theorem 2.1, we start
from the fact that S,, . .., S, Is uniformly distributed in A, . Thus, our proba-
bility 1s equal to

n
PS>z, ...,8,>5,,1-328;,>2,,,) .

t=1
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This 1s the probablllty of a set A,* which Is a slmplex Just as A, except that lts

top Is not at (0,0, . . ., 0) but rather at (z, . .., z,), and that 1ts sldes are not
: n+1
of length 1 but rather of length 1- 37 ;. For uniform distributlons, probabilities
=1
can be calculated as ratios of areas. In thls case, we have
f dz
A n+1 n
=1-Yz) R
[ dz i—=1
A,
Proof of Theorem 2.2,
n-+1
Part one. Let G =G, ,, be the random varlable 3 E;. Note that we need
. f=1
only show that
E 1 En
G’ e
E, 1

s unlformly distributed In A, . The last component

1s taken care of by
noting that 1t equals 1 mlnus the sum of the first n components. Let us use the

E
symbols e;,y,z; for the runnlng varlables corresponding to E;,G ,F'. We first

compute the Jolnt density of £, . . . , E,,G:

— Tl % g€ _ -y
f(el,...,e,,,y)——nc e = e ¥,
§ =]

n
valld when e; >0, all ¢, and y > ¥ ¢;. Here we used the fact that the jolnt den-

=1
sity 1s the product of the denslty of the first n varlables and the denslty of G
glven E,=e,, ..., E, =e¢,. Next, by a simple transformation of varlables, 1t Is
E E
easlly seen that the jJolnt density of —C—;—, C e, Gn ,G Is

n
y* [z, . . . T, yy)=9y"eY (2;920, 2,y <y).

§ =1

This Is easlly obtalned by the transformation {xlzi, N =—f1-,y =y }.
E, E, |
Finally, the marginal density of R T Is obtalned by Integrating the
last density with respect to dy, which glves us '
oo
Jyre¥ dy Iy (g ) =nt 1y (2, ..., 2,).

0
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This concludes the proof of part one.

Part two. Assume that z,>0, ..., z,,,2>0. By Lemma 2.1, we have
P(GS,>z,,...,GS, 1>z,
o0
T, Tn +1 "eV
= [P(S,;>—, ..., 5,.,> [G=y)-g——'-dy
o Yy Y n!
n+1x; ”e_.’/
= [ -z —a
.EL<1 1=1 '.l/ "
D
o0

fy-c)" £y (where ¢ =nz+)la:-)
g v nt Y ;

{ =1

= e"c
n+1

s Ol

{==1

A myrlad of results follow from Theorem 2.2. For example, If
U,U,, ..., U, are 1d uniform [0,1] random varlables, E 1s an exponentlal ran-
dom varlable, and G, Is a gamma (n ) random varlable, then the following ran-
dom varlables have 1dentlcal distributions:

min(U,, ..., U,)
L
1-u"
E
1-e ™
-—.——E-——- (E,G, are Independent )
E+aG, T
E.1,E? 1 EZ?
(57 +57() - :
max(U,, ..., U, G,
It 1s also easy to show that 1s distributed as 1+4~——, that
min(U,, ..., U,) E
‘max(U,, ..., Uy ymin(U,, ..., U,) 1s dlstrlbcl;t;ed as 1-8,-S,,, (le. as
n-1 k

), and that U,,, 1s distributed as where G, and G, ,_
(k) k n +1-k

G +Goy , Gy +Gp 1k
are independent. Since we already know from sectlon I.4 that Uy, 1s beta

(k,n +1-k) distributed, we have thus obtalned a well-known relatlonship
between the gamma and beta dlstributions.
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2.2. Exponential spacings.

In this sectlon, E(\<E < - <E(,, are the order statistics correspond-
Ing to a sequence of 11d exponentlal random varlables £ ,F,, ..., E,

Theorem 2.3. (Sukhatme, 1937)

If we define F =0 then the normallzed exponentlal spaclngs

(n—t+1)(E i yE i) » 151 Sn, -
are 11d exponential random varlables. Also,
BB B B E
n n n-1 n 1
are distributed as Eyy, . . ., E(,).

Proof of Theorem 2.3.

The second statement follows from the first statement: it suffices to call the

random varlables of the first statement £ ,F,, . . . , E, and to note that
E ok
="
Eg=E :
@=Lt

By = E@-yt—

To prove the first statement, we note that the Jolnt density of E(l), Ce, E(n) Is

-,
nte = (OSZIS%S T an <o)

—3 (0 i 1) 20

=nte ™= (0<L2,<z,< ' <z, <00) .
Deflne now Y;==(n-i +1)}(E ;y-E;_y) s ¥i=(n ¢ +1)(z; ~z;_;). Thus, we have
z, = Y1
1 n
Y Ya
1‘2 _ —— ’
n n-1
4
Z, = —
1
Bx,- 1
The determlnant of the matrix formed by 5y Is PR Thus, Y,, ..., Y, has

J
density
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—Eyl
e '™ (y; 20 ,all 2),

“which was to be shown. [JIj

Theorem 2.3 has an Important corollary: in a sample of two 11d exponential
random variates, E,~FE , Is agaln exponentlally distributed. This Is basically
due to the memoryless property of the exponential distribution: given that E >z,
E —-z s agaln exponentially distributed. In fact, If we show the memoryless pro-
perty (this is easy), and if we show that the minlmum of n 1id exponential ran-

E
dom varlables 1s distributed as Py (this Is easy too), then we can prove Theorem

2.3 by Induction.

Theorem 2.4. (Malmquist, 1950)
Let 0SU ;)< - - - SU(,;)<1 be the order statistles of U,,U,, ..., U,, a

sequence of 11d uniform [0,1] random variables. Then , If U(n+1)=1,

Uiy !
A. {(—-U-—(-’)—-) ,1<i<n}Is distributed as U,, . . ., U,.

({1 +1)

L | 1 L L
B. U.n n,Un nUn_ln—l, ey, Un o Ull is distributed as U(n), ey, U(l)'

- Proof of Theorem 2.4.

In Theorem 2.3, replace U; by e’E‘ and U(,-) by e Bo-ivy, Then, In the nota-
tion of Theorems 2.3 and 2.4 we see that the following sequences are identically
distributed:

U(i) f .
(=) ,1<¢<n,
Uiy
(e FomtBon’ 1<i<n,
e B 1<i<n,

U; ,1<:1<n .

t

This proves part A. Part B follows without work from part A. .
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2.3. Exercises.

1. Glve an alternatlve proof of Theorem 2.3 based upon the memoryless pro-
perty of the exponentlial distributlon (see suggestion following the proof of
that theorem).

2. Prove that in a sample of n 1id uniform [0,1] random varlates, the maximum
minus the minimum (l.e., the range) 1s distributed as
1 1

Uy

where U,V are 11d uniform [0,1] random varlates.
3. Show that the minimum spacing In a unlform sample of slze n 1s distributed
1 1
n—+1

4. Prove or disprove:

(1-U ™) where U Itself 1s uniformly distributed on [0,1].

as

T 1s uniformly distributed on {0,1] when U,V are 11d
uniform [0,1] random variables.

5. Prove Whitworth’s formula: if S; , 1<¢ <n +1 are unlform spacings, then

o
2](1—2:1: IS S

P(m?x S;2z)= [?] (1-z )~

(Whitworth, 1897)

8. Let E,E,E, be lld exponentlal random varlables. Show that the following
£ BB g g
EtE, E.tE+E, ' ~1Trethe
Furthermore, show that thelr denslitles are the uniform [0,1} denslty, the tri-

angular denslty on [0,1] and the gamma (3) density, respectively.

random varlables are Independent:

3. GENERATION OF ORDERED SAMPLES.

The flrst applicatlon that one thinks of when presented with Theorem 2.2 Is
a method for generating the order statlstics Uy< - - - <U,, dlrectly. By this
we mean that 1t Is not necessary to generate U,, ..., U, and then apply some
sorting method.

In thls sectlon we will describe several problems which require such ordered
samples. We will not be concerned here with the problem of the generatlon of one
order statlstic such as the maximum or the medlan.
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3.1. Generating uniform [0,1] order statistics.

The prevlous sectlons all suggest methods for generating uniform [0,1] order
statlstlcs:

A. Sorting
Generate iid uniform [0,1] random variates U,, .. ., U, .
Obtain Uy, . . ., U, by sorting the U ’s.

B. Via uniform spacings

Generate tid exponential random variates E,, . . ., E, ,,, and compute their sum G .
U (0)*—0
FOR j:=1 TO n DO

E;
Vir—Vi-nt—3F

C. Via exponential spacings

U(n +1)+1
FOR j:=n DOWNTO 1 DO

Generate a uniform [0,1] random variate U.
1

Uiy=U? Uy

Algorithm A Is the nalve approach. Sorting methods usually found in computer
libraries are comparlson-based. This means that Informatlon is moved around in
tables based upon palrwise comparlsons of elements only. It Is known (see e.g.
Knuth (1973) or Baase (1978)) that the worst-case and expected times taken by
these algorithms are §)(nlogn ). Heapsort and mergesort have worst-case times
that are O (nlogn ). Quicksort has expected time O (n logn ), but worst-case time
both O (n?) and Q(n?2). For detalls, any standard textbook on data structures can
be consulted (see e.g. Aho, Hopcroft and Ullman , 1983). What Is different in the
present case Is that the U;'s are uniformly distributed on [0,1]. Thus, we can
hope to take advantage of truncation. As we will see In the next section, we can
bucket sort the U;'s In expected time O (n ).



V.3.ORDERED SAMPLES 215

Algorlithms B and C are O(n) algorithms In the worst-case. But only
method C Is a one-pass method. But because method C requires the computation
of a power In each ltératlon, 1t 1s usually slower than elther A or B. Storagewise,
method A 1s least efficlent slnce additional storage proportional to n 1Is needed.
Nevertheless, for large n, method A with bucket sorting 1s recommended. This s
due to the accumulation of round-off errors in algorithms B and C.

Algorithms B and C were developed In a serles of papers by Lurle and Hart-
ley (1972), Schucany (1972) and Lurle and Mason (1973). Experlmental comparls-
ons can be found In Rablnowltz and Berenson (1974), Gerontldes and Smith
(1982), and Bentley and Saxe (1980). Ramberg and Tadlkamalla (1978) conslder
the case of the generation of Uy, Ut 4yy, - - -, Uiy where 1<k <m <n. This
requires generating one of the extremes U(k) or U (m )y after which a sequentlal
method simllar to algorithms B or C can be used, so that the total tlme 1s pro-
portional to m —k +1.

3.2. Bucket sorting. Bucket searching.

We start with the description of a data structure and an algorithm for sort-
ing n [0,1] valued elements X, . . ., X, .

Bucket sorting

[SET-UP]
‘We need two auxiliary tables or size n called Top and Next. Top {t] gives the index of the
top element in bucket ¢ (i.e. [

—)) A value of O indicates an empty bucket. Next [¢]

gives the index of the next element in the same bucket as X;. If there is no next element,
its value is 0.

FOR i:=1 TO n DO Next [i ]«0
FOR 1:=0 TO n -1 DO Top [t]+0
FOR 1:=1 TO n DO

Bucket + \_nX,- J

Next (1 }«—Top [ Bucket ]
Top [ Bucket ] «:
[SORTING]

Sort all elements within the buckets by ordinary bubble sort or selection sort, and con-
catenate the nonempty buckets.

The set-up step takes tlme proportlonal to n In all cases. The sort step Is
where we notlice a difference between distributions. If each bucket contains one
element, then thls step too takes time proportlonal to n. If all elements on the
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other hand fall In the same bucket, then the tlme taken grows as n? since selec-
tlon sort for that one bucket takes time proportional to n2. Thus, for our
analysls, we will have to make some assumptions about the X;'s. We wlll assume
that the X;'s are 11d with density f on [0,1]. In Theorem 3.1 we show that the
expected time 1s O (n ) for nearly all densitles f .

Theorem 3.1. (Devroye and Klincsek, 1981)
The buckep sort glven above takes expected time O (n) If and only If

[f¥%z)dz < o

Proof of Theorem 3.1.

Assume that the buckets recelve N, . .., N,_, polnts. It Is clear that each
N; 1s binomially distributed with parameters n and p; Where
i+1

—, 3

Py = .f(:z:)d:z:.

EY Y

By the properties of selection sort, we know that there exist finite posltive con-
stants ¢, ¢,, such that the ttme T, taken by the algorithm satisfles:

Tn
¢ K —m— < ¢, .

i P =
n+ ZN{2

§ =0

By Jensen’'s lnéquallty for convex functions, we have

nX—]lE (N;®) = E(np.- (1-p; )+n2p; ?)

§ =0 § =0
i+1 2
n-1 . n-1 n
<o+ |nf f(z)ds
§ =0 1=0 1
3
T+1

< n+n2n [ [%z)dz
1==0 1
n

1

= n|1+[f ¥z )dz
: 0
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This proves one implication. The other implication requires some finer tools, espe-
clally If we want to avold Imposing smoothness conditlons on f . The key meas-
ure theoretical result needed Is the Lebesgue denslty theorem, which (phrased In

a form sultable to us) states among other things that for any density f on R,
we have

:0:+l
n
imn [ | f@w)>f(z)| dy =0 (for almost all z) .
n —o0 z—-l-
n
Consult for example Wheeden and Zygmund (1977).
If we deflne the density
fa@)=p (St<o<iflay,

then it 1s clear that

i+1
(121 @) <[ 1@ @) dy (t<a<iEh
r+L '
Snf 1 f@-f@)]|dy,
L

n

and thls tends to O for for almost all z. Thus, by Fatou's lemma,
1 1 1

o infff,%z)des > [iminf f,%(z) dz = [f¥z) dz .
0 0 0

But

LY B 2 5w i)

z—O f =0

1
f,,?(a:)dx = [f,%z) dz .
0

=|-'\.:

T
Thus, [f =00 Implles llm 1nf-—7:-=oo. B

In selectlon sort, the number of comparisons of two elements Is

(n-1)+(n-2)+ - - +1=E_§%i)__ Thus, the total number of comparisons needed
In bucket sort Is, in the notation of the proof of Theorem 3.1,

n-1 N; (IV;-1)

X

§ =0
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The expected number of comparisons Is thus
n-1 1 ° 0 '

Z ;(n D +np; (1'271' )‘npi)

t ==0

n(n-1) "2}
— (2 ) EP{z
{ =0

1

< 221 %s) da
2 0

This tpper bound s, not unexpectedly, minlmized for the uniform density on

[0,1], In which case we obtaln the upper bound -1 In other words, the

expected number of comparlsons Is less than the total number of elements ! This
Is of course due to the fact that most of the sorting Is done in the set-up step.

If selection sort is replaced by an O (nlogn ) expected time comparison-based
sorting algorithm (such as qulcksort, mergesort or heapsort), then Theorem 3.1
remalns valid provided that the condition f f <00 1s replaced by

o0

[f (z)og, f (ab) dr < oo .
0

See Devroye and Klincsek (1981). The problem with extra space can be alleviated
to some extent by clever programming tricks. These tend to slow down the algo-
rithm and won't be discussed here.

Let us now turn to searching. The problem can be formulated as follows.

[0,1)-valued data X4, . .., X, are glven. We assume that this.Is an 1ld sequence
with common density f . Let T, be the time taken to determine whether X 1Is
In the structure where Z 1s a random Integer taken from {1, ..., n} Indepen-

dent of the X, 's. This Is called the successful search time. The time T * taken to
determine whether X, ., (a random varlable distributed as X, but Independent
of the data sequence) Is In the structure Is called the unsuccessful search tlme. If
we store the elements In an array, then linear (or sequential search) ylelds
expected search times that are proportional to n. If we use binary search and the
array s sorted, then 1t s proportional to log(n ). Assume now that we use the
bucket data structure, and that the elements within buckets are not sorted.
Then, with linear search within the buckets, the expected number of comparlsons
of élements for successful search, given N, . .., N,_, Is

n-1 Ny N;+1
n 2

=0
For unsuccessful search, we have

ot Ni

Y —N; .
i=0 P ‘

Argulng now as In Theorem 3.1, we have:



V.3.0RDERED SAMPLES 219

Theorem 3.2.

When searching a bucket structure we have E (T, )=O (1) If and only If
[/ 2<o0. Also, E(T*)=0 (1) of and only If [ f 2<oo.

3.3. Generating exponential order statistics.

To generate a sorted sample of exponentlal random varlables, there are two
algorithms paralleling algorithms A and C for the uniform distribution.

A. Bucket sorting

Generate iid exponential random variates E,, . . ., E, .
Obtain E )< - -+ <E(,) by bucket sorting.

C. Via exponential spacings

E(o)4—0
FOR t¢:=1 TO n DO

Generate an exponential random variate F .

Ey—E
OEe-nt T

Method C uses the memoryless property of the exponential distribution. It
takes time O (n). Careless bucket sorting applied to algorithm A could lead to a
superllnear time algorithm. For example, thls would be the case If we were to
divide the Interval [0,max E;] up Into n equl-sized Intervals. This can of course
be avolded If we first generate U ;< - - <U,y for a unlform sample In
expected time O (n ), and then return —logU(,,), ..., ~log U(l). Another possibil-
Ity 1s to construct the bucket structure for E;mod 1, 1<+ <n, l.e. for the frac-

tlonal parts only, and to sort these elements. Slnce the fractlonal parts have a
bounded density,

e Iig ()

1
1——
€
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we know from Theorem 3.1 that a sorted array can be obtalned In expected time
O (n ). But this sorted array has many sorted sub-arrays. In one extra pass, we
can untangle 1t provided that we have kept track of the unused Integer parts of

the data, }FE; |. Concatenation of the many sub-arrays requlires another pass,

but we stlll have linear behavior.

3.4. Genérating order statistics with distribution function F.

The order statlstles X ;)< - -+ <X(,, that correspond to X,, ..., X,, a
sequence of 1id random varlables with absolutely continuous distribution function
F on R! can be generated as

FAUqgy), - oy FTH(Uyy)
or as

Fla-e B0y . Fla-—eFw)

starting from uniform or exponential order statistles. The exponentlal order
statistlcs method based on C (see previous section) was proposed by Newby
(1979). In general, the cholce of one method over the other one largely depends
upon the form of F . For example, for the Welbull distributlon function

I

F(z)=1-¢ °® (z 20)
1 1 _
we have F~!(u)=b (-log(1~u))?® and F~}(1-e™*)==bu %, so that the exponentlal
order statistics method seems better sulted.

In many cases, 1t 1s much faster to Just sort X, . .., X, so that the costly
Inverslons can be avolded. If bucket sortlng Is used, one should make sure that
the expected time 1s O (n ). This can be done for example by transforming the
data In a monotone manner for the purpose of sorting to {0,1] and lnsuring that
the denslty f of the transformed data has a small value for [/ 2 Transforma-

tions that one might consider should be slmple, e.g.

Is useful for transform-

Ing nonnegatlve data. The parameter ¢ >0 Is a deslgn parameter which should be
-plcked such that the density after transformation has the smallest possible value
for [ f 2.

The so-called grouplng method studled by Rabonowltz and Berenson (1974)
and Gerontides and Smlth (1982) Is a hybrid of the Inversion method and the
bucket sorting method. The support of the distribution 1s partitloned into k&
Intervals, each having equal probabllity. Then one keeps for each Interval a
linked list. Intervals are selected with equal probabliity, and within each interval,
random polnts are generated directly. In a flnal pass, all linked lists are sorted
and concatenated. The sorting and concatenating take llnear expected time when



V.3.0RDERED SAMPLES 221

k =n, because the Interval cardinalltles are as for the bucket method In case of a
unlform vdlst,rlbutlon.. There are two major differences with the bucket sorting
method: first of all, the determinatlon of the Intervals requires k-1 Impliclt inver-
slons of the distrlbution function. Thlis is only worthwhile when !t can be done in
a set-up step and very many ordered samples are needed for the same distribu-
tlon and the same n (recall that k Is best taken proportional to n ). Secondly, we
have to be able to generate random varlates with a distrlbution restricted to
these Intervals. Candldates for this Include the rejectlon method. For monotone
densitles or unimodal densltles and large n, the rejectlon constant will be close to
one for most Intervals If reJection from uniform denslties 1s used.

But perhaps most promlising of all 1s the rejection method litself for gen-
erating an ordered sample. Assume that our density f 1s dominated by cg where
¢ 1s another denslty, and ¢ >1 1s the reJectlon constant. Then, explolting proper-
tles of polnts uniformly distributed under f , we can proceed as follows:

Rejection method for generating an ordered sample

[NOTE: n is the size of the ordered sample; m >n is an integer picked by the user. Its

recommended value is | ne + \/nc (¢ —1)logl_._ﬂ.__] J

2m(c ~1)
REPEAT
Generate an ordered sample X, . . ., X, with density ¢.
Generate m iid uniform [0,1] random variates U,, . .., U, .

Delete all X; s for which U; >¢g (X;)/f (X;).
UNTIL the edited (but ordered) sample has N > n elements

Delete another N-n randomly selected X;’s from this sample, and return the edited sam-
ple.

The maln loop of the algorithm, when successful, glves an ordered sample of
random size N >n. This sample Is further edited by one of the well-known
methods of selectlng a random (uniform) sample of slze N-n from a set of slze n
(see chapter XII). The exvpected tlme taken by the latter procedure Is
E(N-n | N>n) times a constant not depending upon N or n. The expected
tlme taken by the global algorithm 1s m /P(N>n)+ E(N-n | N >n) If con-
stants are omltted, and a uniform ordered sample with density ¢ can be gen-
erated In linear expected time.
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r————

Theorem 3.3.

Let m,n,N,f ,c,g keep thelr meaning of the rejection algorithm defineq
above. Then, If m >¢n and m =0 (n), the algorithm takes expected time
O (n ). If In additlon m —cn =0 (n ) and (m -cn )/\/7-2_ —00, then

T, m

T e - > ~
P(NZn)+E(Nn|N—n) cn

as n —Q00.

Proof of Theorem 3.3.

In order to analyze the success probablllty, we need some result about the
closeness between the blnomlal and normal distributions. First of all, since N s

binomlal (m ,-1—-), we know from the central limlt theorem that as m —oo,
c
m
n — mma—

P(N<n) ~ & <

— R )
A/ mia-3)
C [

where & Is the normal distribution function. If m >c¢n at all times, then we see
that P(N <n) stays bounded away from 1, and osclllates asymptotically
between O and 1/2. It can have a limit. If (m~cn)/vVn —oo, then we see that
P (N <n)—o0.

We  note that E(N-n|N>n)=E(N-n),)/P(N>n). Since
N-n<m-n, we see that T, <(2m-n)/P(N >n). The bound 1s O (n) when
m=0(n) and P(N 2n) is bounded away from zero. Also, T, ~cn when
P(N<n)—=0and m~cn. |}

Remark 3.1. Optimal choice of m.

The best possible value for T, Is cn because we cannot hope to accept n
polnts with large enough probabllity of success unless the original sample Is at
least of slze ¢n. It Is fortunate that we need not take m much larger than cn.

Detalled computations are needed to obtain the followlng recommendation for m :
take m close to '

nec + \/nc(c—l)log[-éﬁﬁ_—l—)—) o
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W1th this cholce, T, 1s cn +0O (Vnlog(n)). See exerclse 3.7 for guldance with the
dertvation. [l

3.5. Generating exponential random variates in batches.

By Theorem 2.2, ild exponentlal random varlates E,, .. ., E, can be gen-
erated as follows:

Exponential random variate generator

Generate an ordered sample U< + - - U,y of uniform [0,1] random variates.
Generate a gamma (n ) random variate G, .
RETURN (Gn U(l)'Gn (U(g)—U(l), ey, G” (I—U("_l))).

Thus, one gamma varlate (which we are able to generate In expected time
O (1)) and a sorted uniform sample of size n -1 are all that 1s needed to obtaln an
11d sequence of n exponential random wvarlates. Thus, the contribution of the
gamma generator to the total time 1s asymptotically negligible. Also, the sorting
can be done extremely qulckly by bucket sort If we have a large number of buck-
ets (exercise 3.1), so that for good Implementations of bucket sorting, a super-
efliclent exponential random varlate generator can be obtalned. INNote however
that by taking differences of numbers that are close to each other, we loose some
accuracy. For very large n, thls method Is not recommended.

One speclal case Is worth mentloning here: UG, and (1-U)G, are 1id
exponential random varlates.

3.6. Exercises.

1. In bucket sortlng, assume that instead of n buckets, we take kn buckets
where k >1 1s an Integer. Analyze how the expected time Is affected by the
cholce of k. Note that there Is a time component for the set-ip which
Increases as kn . The tlme component due to selectlon sort within the buck-
ets 1s a decreasing functlon of k¥ and f . Determline the asymptotically
optimal value of k£ as a functlon of ff 2 and of the relatlve welghts of the
two time components.

2. Prove the clalm that If an O (nlogn ) expected tlme comparison-based sort-
1

Ing algorithm 1is used within buckets, then ff log,f <oco Implles that the
0
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expected time 1s O (n).

3. Show that [flog,/ <oco implies [f2<co for any denslity /. Glve an
example of a density f on [0,1] for which f [ log,f <oo, vet [f 2=co.
Glve also an example for which [ f log, f =co.

4. The randomness In the time taken by bucket sorting and bucket searching

n-1 ,
can be appropriately measured by 373 N;2%, a quantity that we shall call T,.
1t =0
It 1s often good to know that T, does not become very large with high pro-
babllity. For example, we may wish to obtaln good upper bounds for
P (T, >E (T, )+a), where a>0 1s a constant. For example, obtaln bounds
that decrease exponentlally fast In n for all -bounded densities on [0,1] and
all a>0. Hint: use an exponentlal verslon of Chebyshev's inequallty and a
Polssonlzation trick for the sample slze.

5. Give an O (n ) expected time generator for the maximal uniform spacing In a
sample of slze n. Then give an O (1) expected time generator for the same

problem. .
8. If a denslty f can be decomposed as pf ,+(1-p)f , where f ,,f , are dens)-
tles and p €[0,1] Is 2 constant, then an ordered sample X< 0 KXy of

f can be generated as follows:

Generate a binomial (n,p ) random vartate N .

Generate the order statistics Y )< - <Y and Z3< -+ £Z,_py for
densities f , and f, respectively. ' :
Merge the sorted tables into a sorted table X )< -+ + <X,

The acceleration 1s due to the fact that the method based upon Inverslon of
F 1s sometimes simple for f , and f , but not for f ; and that n coln flips
needed for selection In the mixture are avolded. Of course, we need a bino-
mlal random varlate. Here Is the question: based upon this decomposition
method, derlve an efficlent algorithm for generating an ordered sample from
any monotone density on [0,00).

7. This Is about the optimal cholce for m In Theorem 3.3 (the rejection method

for generating an ordered sample). The purpose is to find an m such that
for that cholce of m, T, —cn~iInf (T,~-cn) as n —oo. Proceed as follows:
. m

first show that it suffices to consider only those m for which T, ~cn . This
Implies that E((N-n),)=o0(m-cn), P(N <n)—0, and (m—cn )/Vn —oo.
Then deduce that for the optimal m,

Ty = en (1+(1+0 (T2

n

+P(N<n))).
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Clearly, m ~c¢cn, and (m—-cn)/cn Is a term which decreases much slower
than 1/vn . By the Berry-Esseen theorem (Chow and Telcher (1978, p. 299)
or Petrov (1975)), find a constant C depending upon ¢ only such that

m
n ——

P(N<n) ¢ < <
| P( <n)¢(72=(z=))|_\/a—
[ C

Conclude that 1t sufficess to find the m  which mlnlmizes

m
n———-
(m—cn)/(cn )+® —_— . Next, uslng the fact that as 4 —oc0,
m 1
\/ Za-2)
c ¢
‘ ' "
1-®(1) ~ —e 2,
uVvar

reduce the problem to that of minimizing

Ap2
c-1 1

p e
cn pvarn

where m-—cn=pVec(c-1)n for some p—oo, p=o0(Vn ). Approxlmate
asymptotic minimization of this ylelds

_ o [ cn
p= &l onc-1)

Finally, verify that for the corresponding value for m, the minimal value of
T, s asymptotically obtalned (In the ” ~ " sense).

4. THE POLAR METHOD.

4.1. Radially symmetric distributions.

Here we wlll explaln about the intlmate connectlon between order statistics
and random vectors with radlally symmetric distributions In R ¢ | This connectlon
will provide us with a wealth of algorlthms for random varlate generatlon. Most
importantly, we will obtain the tlme-honored Box-Muller method for the normal
distributlon.

A random vector X=(X,, ..., X;)In R ¢ 15 radially symmetric If AX
1s distributed as X for all orthonormal d Xd matrices A . It Is strictly radlally

symmetric If also P (X =0)=0. Noting that AX corresponds to a rotated version
of X, radlal symmetry 1s thus nothing else but invarlance under rotations of the
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coordinate axes. We write €y for the unit sphere in R ¢ X is uniformly dls=-i-
buted on C; when X Is radlally symmetric and | | X | | =1 with probabiiiy
one. Here | |.| | Is the standard L, norm. Sometimes, a radlally symme:=ic
random vector has a density f , and then necessarlly 1t 1s of the form

f@y . m)=9(|z]]) (@=@, ..., 2)ER?)

for some function ¢ . This function ¢ on [0,00) Is such that
o0

dedrd'lg('r) dr =1,
0

where
' 4
2

V, = —————
R
2

s the volume of the unit sphere C;. We say that g deflnes or determines the
radlal density. Elliptical radial symmetry 18 not be treated In this early chapter,
nor do we specifically address the problem of multivariate random varlate genera-
tion. For a bibllography on radial symmetry, see Chmlelewski (1981). For the
fundamental - properties of radlal distributions not given below, see for example
Kelker (1970). '
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Theorem 4.1. (Uniform distributions on the unit sphere.)

1. If X Is strictly radlally symmetric, then —rrj-)({—-l—l— Is uniformly distributed
on Cy.

2. If X 1s unlformly distributed on C,, then (X,? ..., X;?) Is distributed as
(-1-?9—1-, Ce ., ——éd—), where Y,, ..., Y; are Independent gamma (—;—) random
varlables with sum S.

3. It X 1is unlformly distributed on C,;, then X,% 1s beta (-}- -51-51—)

Equtvalently, X% Is distributed as

Y
where Y ,Z are Independent
Y+2 P

-1 ) random varlables. Furthermore, X, has den-

gamma (%—) and gamma ( d
sty

(<) i
2 ___ (123 *  (|z|<D).

NENESS

Proof of Theorem 4.1.

For all orthogonal d Xd matrices A, _ﬂ_ is distributed as

Ax T
, which In turn 1s distributed as because X 1s strictly

[TAX ] I

radlally symmetric. Slnce | ITTX—TTl | = X1 ——1, statement 1 fol-

lows.

To prove statement 2, we defilne the 1ld normal random variables
N, ..., Ny, and note that N=(N,, ..., Ny) Is radlally symmetric with den-
slty determined by

2

g(r)=—7¢ * (r>0).
(2m)?
N;
Thus, by part 1, the vector with components -—l—l—-N-—r—I— is uniformly distributed
on C,;. But slnce N;Q 1s gamma (-2—,2), we deduce that the random vector with
N,—2
components —I—T—j—v—-l—l-? 1s distributed as a random vector with components

2Y;

—23— Thls proves statement 2.
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The first part of statement 3 follows easlly from statement 2 and known pro-
d-1
2

pertles of the beta and gamma distributions. The beta (—;—, ) density 1s

d-3
_ 2
e

vz
d
I‘(;) :
where ¢ = . Putting Y=vX , we see that Y has density
r(_l..)p(_d_"_’_l_
2 2
d-3

2

o<z <1),

c(1-y? -}y-zy (o<y<1),

when X 1s beta (-—;—,—4—2_—1-) distributed. Thils proves statement 3. .

Theorem 4.2. (The normal distribution.)

If Ny, ..., N; are 1id normal random varlables, then (N,, ..., N;) Is
radially symmetrlc with denslty defined by

r?

g(r)=—= —e ?  (r20).
(2m)*
Furthermore, If (X,, ..., X;) Is strictly radlally symmetric and the X;’'s are

Independent, then the X,- 's are 11d normal random variables with nonzero varl-
ance.

Proof of Theorem 4.2.

The first part was shown In Theorem 4.1. The second part Is prov_ed for
example In Kelker (1970). |
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Theorem 4.3. (Radial transformations.)

1. If X Is strictly radlally symmetric In R % with defining function g, then
R=| | X || has density

dV,rilg(r) (r>0).

2. If X Is uniformly distributed on C,;, and R 1s Independent of X and has

the denslty glven above, then RX s strictly radlally symmetric In R ¢ with
defining function ¢ .

3. It X s radlally symmetric In R ¢ with deflning function ¢, and If B Is a
random varlable on [0,00) with density - , Independent of X, then RX Is
radlally symmetric with defining function

“h
gr(ry=[20) gLy au .
0 U U

Proof of Theorem 4.3.

For statement 1, we need the fact that the surface of C; has d-1-
dimensional volume d V4. By asimple polar transformation,

PRZr)y= [ g(|lz]|])ds = [dVyy%gy)dy (r>0).
[lz]|<r y<r

Thls proves statement 1.

RX 1s radlally symmetric because for all orthogonal d Xd matrices A,
A (RX) 1s distributed as R (AX) and thus as RX . But such distributions are
unlquely determlned by the distrlbution of | |RX | |=R | |X | |=R, and -
thus, statement follows from statement 1.

Constder finally part 3. Clearly, RX s radlally symmetric. Glven R,
R | | X | | has density

d-1
FVi(F) 9(F) (r20)

Thus, the density of | | X | | Is the expected value of the latter expression with
respect to R, which Is seen to be g*. i

Let us briefly discuss these three theorems. Conslder first the marginal dlstri-
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butions of random vectors that are uniformly distributed on Cj:

d | Density of X, (on [-1,1]) Name of density
2 —-—*———2- Arc sine density
mv1-z
1 . .
3 — Uniform {~1,1} density
2
4 2 iz
i
3 2
5 —{(1l-2
~(1-2%)
8 3
6 —(1-2%)2
3 (1-z%)

Since all radlally symmetric random vectors are distributed as the product of a
uniform random vector on Cd and an independent random varlable R, 1t follows
that the first component X, 1s distributed as R tlmes a random varlable with
denslties as glven In the table above or In part 3 of Theorem 4.1. Thus, for d >2,
X, has a marglnal density whenever X Is strictly radlally symmetric. By
Khinchine's theorem, we note that for d >3, the density of X, 1s unimodal.

Theorem 4.2 states that radlially symmetric distributions are virtually useless
If they are to be used as tools for generatlng Independent random varlates
X,, ...,X, unless the X;’s are normally distributed. In the next sectlon, we
will clarify the special role played by the normal distribution.

4.2. Generating random vectors uniformly distributed on C,.

The following two algorithms can be used to generate random varlates with
a uniform distribution on Cj:

Via normal random variates

Generate iid normal random variates, N,, . . ., N, and compute S /N 24+ - - - +N, %
N, N,
RETURN (—¢*, . - -, —5-).
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Via rejection from the enclosing hypercube

REPEAT
Generate {id uniform {~1,1] random variates X,,...,X,;, and compute
S=X 2+ +X,2
UNTIL $<1
S—V§
RETURN (ﬁ- e -X-L)
S’ S

In addition, we could also make good use of a property of Theorem 4.1. Assume
that d Is even and that a d-vector X 1s uniformly distributed on C;. Then,

(X 2+X.2 ..., X, ,24X,?)

is distributed as

Ey
E 3
s’ 8
where the E;’'s are 1ld exponentlal random varlables and S=FE,+ - +E,.

2
X
Furthermore, glven X ,2+X,2=r2, (—,—2) Is unlformly distributed on C,.
rlor
Thlis leads to the followlng algorithm:

Via uniform spacings

Generate iid uniform [0,1] random variates U,, ..., Uy .
2

Sort the uniform variates (preferably by bucket sorting), and compute the spacings
Sy, ...,8,.

2
Generate independent pairs (V,,V,), . . ., (Vyu_1, Vi), all uniformly distributed on C,.

RETURN (V,/S,,V./5.. Ve /52 Vi /Sar - - -, V,_l\/S':,V,, \/3‘2).
2 2

The normal and spacings methods take expected time O (d), while the rejec-
tlon method takes time Increasing faster than exponentlally with d . By Stirling’s

formula, we observe that the expected number of lterations In the rejection
method 1s



232 V.4 POLAR METHOD

od 2! P(z dl 2d 'g
~ ) (24 T,
Vd. .i Te
7[.2

which Increases very rapidly to co. Some values for the expected number of itera-
tlons are given In the table below.

d Expected number of iterations
1 1
2 i%1.27
T
3 S~
T
32
4 ——o3.24
7|'2
5 —6-9-%6.06
~
6 38—‘&NIZ 3
il
7 -8—:42%27 0
7r3
61
8 44 ~~62.7
7r4
122880
10 ——399
®

The rejection method Is not recommended except perhaps for d <5. The normal
and spacings methods differ In the type of operations that are needed: the normal
method requlres d normal random varlates plus one square root, whereas the

d
spacings method requlres one bucket sort , —2- square roots and -é-—l uniform ran-

dom varlates. The spaclngs method Is based upon the assumption that a very fast
method is avallable for generating random vectors wilth a uniform distribution on
C,. Since we work with spacings, 1t 1s also possible that some accuracy Is lost for
large values of d. For all these reasons, it seems unllkely that the spaclngs
method will be competitive with the normal method. For theoretical and experi-
mental comparlsons, we refer the reader to Deak (1979) and Rubinsteln (1982).
For another derlvation of the spaclngs method, see for example Sibuya (1962),
Tashiro (1977), and Guralnik, Zemach and Warnock (1985).
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4.3. Generating points uniformly in and on C,.
We say that a random vector Is uniformly distributed In C,; when 1t is radi-

ally symmetric with deflning functlon ¢ (r )=—I}1_ (0<r <1). For d =2, such ran-
o d
dom vectors can be convenlently generated by the relectlon method:

Rejection method

REPEAT

Generate two iid uniform {~1,1] random variates U, U,.
UNTIL U 2+U,2<1
RETURN (U,,U,)

4
On the average, — palrs of uniform random varlates are needed before we exit.
T

For each palr, two multlplications are required as well. Some speed-up Is possible
by squeezing:

Rejection method with squeezing

REPEAT

Generate two iid uniform [-1,1] random variates U, U, , and compute
Z—|U|+|U,s]. '
Accept —[{Z <1]
IF NOT Accept THEN IF Z >V2
THEN Accept «{U,*+U,?<1]
UNTIL Accept
RETURN (U,,U,)

In the squeeze step, we avold the two multipllcations preclsely 509% of the tlme.

The second, slightly more difflcult problem 1s that of the generation of a
polnt uniformly distributed on C,. For example, If (X ,X,) Is strictly radlally
symmetric (this 1s the case when the components are 11d normal random varl-
ables, or when the random vector 1s uniformly distributed In C,), then 1t suffices

X, X, = =
to take (T'T) where S =+4/X,“+X,% At first sight, It seems that the costly

square root, 1s unavoldable. That this Is not so follows from the followlng key
theorem:
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Theorem 4.4.

If (X ,,X ;) Is uniformly distributed In C,, and S =+/X ,°>+X,?, then:
1 Xy
1. S and (——,—) are Independent.
S S
2. S?%is uniformly distributed on [0,1].

X,
3. —— 1s Cauchy distributed.
X,

X, X
4. (—g,-l—,—éi) Is uniformly distributed on C,,.

5. When U Is uniform [0,1], then (cos(27U ),sin(27 U )) 1s uniformly distributed

on C,.
8. ( , ) Is uniformly distributed on C,.
S S?

Proof of Theorem 4.4.

Propertles 1,3 and 4 are valld for all strictly radially symmetric random vec-
tors (X ,,X,). Properties 1 and 4 follow directly from Theorem 4.3. From
Theorem 4.1, we recall that § has denslty dV, ré-l=oy (0<r <1). Thus, S?1s
uniformly distributed on [0,1]. This proves property 2. Property 5 Is trivially true,

X

and wlll be used to prove propertles 3 and 8. From 5, we know that 2 Is dis-
1

tributed as tan(27U ), and thus as tan(7wU ), which In turn Is Cauchy distributed

(property 3). Finally, in view of
cos(4nlU) = cos*(2nU )-sin®(2nU) ,
'sin(4nU ) = 2sin(27U )cos(2nU ) ,

X,2-X,2 2X,X,

SZ ! SQ
tributed as (cos(4mU ),sin(4nU)). This concludes the proof of Theorem 4.4. |

we see that ( ) 1s uniformly distributed on C,, because 1t Is dis-

Thus, for the generation of a random vector uniformly distributed on C 2
the following algorithm Is fast:
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REPEAT
Generate iid uniform [-1,1] random variates X ,,X,.
Set ¥V X2 Y, X285 «Y ,+7,.
UNTIL § <1
~Y, 2X,X, )

Y
RETURN (—o—,—

4.4. Generating normal random variates in batches.

We begin with the description of the polar method for generating d 1id nor-
mal random varlates:

Polar method for normal random variates

Generate X uniformly on Cy.

r2

Generate a random variate R with density dV;r%%e 2 (r>0). (R is distributed as
v2G where G is gamma (-g.) distributed.)

RETURN RX

In particular, for d =2, two independent normal random varlates can be obtalned
by elther one of the followlng methods:
Xl X2

VeE ()
V2E (cos(2nU),sin(2xU))

XX 2X.X
\/2—E" 1. 2 , 1<+ 2
XX Xxr

X, X
v—4log(S )(—gl—,—s—g-)

Here (X [,X,) Is uniformly distributed in C,, S=+/X,>+X,%, U Is unlformly
distributed on [0,1] and E 1s exponentlally distributed. Also, E 1s Independent of
the other random varlables. The validity of these methods follows from Theorems
4.2, 4.3 and 4.4. The second formula Is the well-known Box-Muller method
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(1958). Method 4, proposed by Marsaglia, Is simllar to method 1, but uses the

X,
S S )
(see Theorem 4.4), and thus that —2log(S) Is exponentially distributed. If the
exponentlal random varlate in £ is obtalned by Inverslon of a unlform random
varlate, then It cannot be competitive with method 4. Method 3, published by
Bell (1968), 1s based upon property 6 of Theorem 4.4, and effectlvely avolds the
computation of the square root in the definitlon of S. In all cases, it is recom-
mended that (X ,,X,) be obtalned by relection from the enclosing square (with an
accelerating squeeze step perhaps). A closing remark about the square roots.
Methods 1 and 4 can always be lmplemented with just one (not two) square
roots, \f we compute, respectively,

observation that $% is a uniform [0,1] random varlate Independent of (——

2

S2

and

—2log(S %)

sz
In one of the exerclses, we wlll Investigate the polar method with the next

higher convenient cholee for d, d ==4. We could also make d very large , In the

range 100 - - - 300 , and use the spacings method of sectlon 4.2 for generatlng X
with a uniform distribution on C; (the normal method Is excluded since we want

d
to generate normal random variates). A gamma (—é—) random varlate can be gen-

erated by one of the fast methods described elsewhere .in this book.

4.5. Generating radially symmetric random vectors.

Theorem 4.3 suggests the following method for generating radlally sym-
metrlc random vectors In R ¢ with defining function g :

Generate a random vector X uniformly distributed on Cj.
Generate a random variate R with density dV, r¢ g (r) (r >0).
RETURN RX

Since we already know how to generate random varlates with a unlform distribu-
tion on Cd, we are Just left with a unlvariate generation problem. But In the
multiplication with R, most of the Information in X 1s lost. For example, to
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Insure that X 1s on Cy, the rejectlon method generates X unlformly In C; and
divides then by | | X | |.But when we multiply the result with R , this division
by | | X | | seems somehow wasteful. Johnson and Ramberg (1977) observed

that 1t 1s sometimes better to start from a random vector with a uniform distri-
bution In Cj:

The Johnson-Ramberg method for generating radially symmetric random vec-
tors '

Generate a random vector X uniformly in Cy (preferably by rejection from the enclosing
hypercube).

Generate a random variate R with density -V, % g'(r) (r >0), where ¢ is the defining
function of the radially symmetric distribution.

RETURN RX

This method only works when -V, r 4 g'(r) 1s Indeed a density In r on [0,00). A
sufficlent condlitlon for this Is that ¢ Is contlnuously differentiable on (0,00),
¢'(r)<0 (r>0),and rég(r)—0asr 10 and r foo.

Example 4.1. The multivariate Pearson II density.
Conslder the multivarlate Pearson II density with parameter a >1, defined

by
g(r)=-c@-r3*1 (0<r<1),
where
d
3 I'(a +?)
‘ F]
m2I(a)

The density of R In the standard algorithm Is the density of VB where B s a
beta (-éd-,a ) random variable:

g(r) = cdV, rt-1(1-r2)%"} 0<r<1).

1
For d =2, R can thus be generated as V 1-U ¢ where U Is a uniform [0,1] ran-
dom varlate. We note further that In thls case, very little Is galned by using the
Johnson-Ramberg method since R must have density

g(r)=2cVyr¢+tia-1)1-r2)*? (0<r<1).
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This Is the denslty of the square root of a beta (§+1,a —~1) random varlable. .

Example 4.2. The multivariate Pearson VII density.

The multlvariate Pearson VII density with parameter a >-:— 1s deflned by

the function
c

g(f)=m,

where

I'(a)

d

ry d
2F e
m°T(a 2)

c ==

The densitles of R for the standard and Johnson-Ramberg methods are respec-
tively,

cdV,ré-1
and
2cV,ritlg
In both cases, we can generate random R as -1% where B is beta (-g-,a —-g—)
In the former case, an; beta (-g-+1,a—-5) In the latter case. Note here that for
+1

the speclal cholce a = , the multlvariate Cauchy density s obtained. [

Example 4.3.
The multivariate radlally symmetric distribution determined by
1 .

9O = Ty
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leads to a density for R given by
dr -1
(14r ¢ )2 .
1

d
This 1s the density of ( ) where U is a uniform [0,1] random variable.

1-U

4.6. The deconvolution method.

Assume that we know how to generate Z, a random varlable which Is distri-
buted as the sum X +Y of two 1id random variables X ,Y with density f . We
can then generate the palr X,Y by looking at the condltlonal density of X glven
the value of Z. The followlng algorithm can be used:

The deconvolution method

Generate a random variate Z with the density k (z )== f f(z)f (z-2) dz.

f(2)f (Z-2)

Generate X with densit
Y TR

RETURN (X,Z-X)

First, we notlice that 2 Is indeed the denslty of the sum of two 1id random vari-

ables with density f . Also, glven Z, X has denslity f(z ,)L”; Z(f—x) . Thus, the

algorithm Is valid.

To 1llustrate thls, recall that If X,Y are 11d gamma (—;—), then X+Y 1is

exponentlally distributed. In thls example, we have therefore,
1 -

= >
[ (z) T (z 20),
h(z)=1¢"% (220).
Furthermore, the density / (x;féz(f <) can be wrltten as

1

m (z€(0,2)),

which 1s the arc sine density. Thus, applylng the deconvolution method shows the
following: If £ is an exponential random variable, and W 1s a random varlable
with the standard arc sine denslty

1

m (re(o,1)),
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then (EW ,E (1-W)) Is distributed as a palr of 11d gamma (é—) random varlables.

But thls leads preclsely to the polar method because the followlng palrs of ran-
dom varlables are 1dentically distributed:

(N,,N,)( two 11d normal random varlables);
(V2EW V2E (1-W));
(V2E cos(2nU ),V2F sin(2nU)) .

Here U 1s a unlform [0,1] random varlable. The equivalence of the first two palrs

is based upon the fact that a normal random varlable Is distributed as the square
root of 2 tlmes a gamma (-;—-) random varlable. The equivalence of the first and
the third palr was established In Theorem 4.4. As a stde product, we observe that
2

W 1s distributed as cos*(2wU), l.e. as 5 Where (X,,X ;) 1s uniformly dls-
+

1 2
tributed in C,.

4.7. Exercises.

1.  Write one-line random variate generators for the normal, Cauchy and arc
sine dlstributions.

N
2. If N,N, are 1id normal random varlables, then ]—V-l- Is Cauchy distributed,

N2+ N,? 1s exponentially distributed, and /N,?+N,? has the Raylelgh

z

distribution (the Raylelgh denslty Is ze .? (z >0)).

3. Show the following. If X s uniformly distributed on C; and R s indepen-
dent of X and generated as max(U,, ..., U;) where the U;’s are 11d unl-
form [0,1] random varlates, then RX 1s unlformly distributed In C,.

4. Show that If X Is uniformly distributed on C,, then Y /| | Y | | Is uni-
formly distributed on C} where k <d and Y=(X,, ..., X;).

5. Prove by a geometrical argument that if (X ;,X,,X ;) Is uniformly distributed
on C,, then X 1+X o and X ; are uniform [-1,1] random varlables.

6. If X 1Is radlally symmetric with defining function ¢, then lts first com-
ponent, X |, has density

d-

oy T i

T3 fu(u?r?) ? g(u)du (r>0).
I( 3 ) r

7. Show that two independent gamma (-;—) random variates can be generated
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as (-Slog(U,),~(1-S Nlog(U ,)), where S =sin*(2wU,) and U,,U, are indepen-
dent uniform [0,1] random varlates.

8. Conslder the palr of random varlables defined by

28 1-S
V2FE = JoF ——
( 1+S8 28 1+S)

where E 1s an exponentlal random varlable, and S «—tan*(wU) for a uniform

[0,1] random variate U. Prove that the palr is a pair of 11d absolute normal
random varlables.

9. Show that when (X,;,X,,X;X,) 1s unlformly distributed on C,, then
(X 1,X5) 1s uniformly distributed in C,.

N G \
10. Show that both and are unlformly distributed on
VN?12E V. G+E

[0,1] when N,E and G are Independent normal, exponentlal and gamma

(%—) random varlables, respectively.

11. Geperating uniform random vectors on C,. Show why the following
algorithm 1s valld for generating random vectors uniformly on Cg

Generate two iid random vectors uniformly in C,, (X,X,),(X4,X,) (this is best
done by rejection).

S *—'X 12+X22, W*_X32+X42

RETURN (X, X5, X 5 / I—"W—E X4 —1-;‘7)

(Marsaglla, 1972).

12. Generating random vectors uniformly on C,. Prove all the starred
statements In this exercise. To obtaln a random vector with a uniform distri-

18
butlon on C, by rejection from [~1,1] requires on the average —;—=5.73...

uniform [-1,1] random varlates, and one square root per random vector. The
square root can be avolded by an observatlon due to Cook (1957): If
(X ,X 5, X 3,X,) 1s unlformly distributed on C,, then

1
X 24X+ X2+X 2

(2(X X X 1 X 3),2(X X X 1 X )X 2-X 2-X 2+ X 2)

Is uniformly distributed on Cj (*). Unfortunately, If a random vector with a
uniform distribution on 04 1s obtalned by rejection from the enclosing
hypercube, then the expected number of uniform random varlates needed Is

4(-:-3—3-)~13. Thus, both methods are quite expenstve. Using Theorem 4.4 and
T
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exerclses 4 and 5, one can show (%) that

X, V1-2%2 X,V1-Z*2 7
( \/g‘ ’ \/g ’ )

Is uniformly distributed on €5 when (X },X,) Is uniformly distributed In C,,

S=X_2+X,2 and Z Is Independent of (——,——=) and uniformly distri-
vt 7575 -

buted on [-1,1]. But 25-1 itself Is a candldate for Z (x). Replacing Z by
25 -1, we conclude that

(2X,V1-§ ,2X,V1-S ,28-1)

is uniformly distributed on C3 (thls method was suggested by Marsaglia
(1972)). If the random vector (X,,X,) Is obtalned by rejectlon from [-1,1]?,
the expected number of uniform [-1,1] random varlates needed per three-

-dlmenslonal random vector is -8—%2.55 ().
T

13. The polar methods for normal random variates, d=4. Random vec-
tors uniformly distributed on C 4 Can be obtalned quite efficlently by
Marsaglia’s method described In exerclse 11. To apply the polar method for
normal random varlates, we need an Independent random varlate R distri-
buted as /2(F,+E,) where E | E, are Independent . exponentlal random
variates. Such an R can be generated In a number of ways: '

(1) As 2(E+FE,).
(1) As /-2log(U,U,) where U,,U, are Independent unlform [0,1] random
varlates.

(1) As /-2log(WU,) where U, Is as In (1) and W 1is an Independent ran-
dom varlate as In exerclse 11.

Why 1s method (l11) valld ? Compare the three methods experimentally.
Compare also with the polar method for d =2.

14. Implement the polar method for normal random variates when d 1s large.
Generate random vectors on Cd by the spaclngs method when you do so.
Plot the average time per random variate versus d.

15. The spacings method for uniform random vectors on C4 when d is

odd. Show the valldity of the followlng method for generating a uniform
random vector on Cy:
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Generate —1 iid uniform [0,1] random variates.

Obtain the spacings S,, ..., S4.; by bucket sorting the uniform random vari-
2

ates,

Generate independent gamma ( d-1

-1
) and gamma (-2—) random variates G ,H .

R« , R*+—\/1-R 3= —_—
V G+7 1-R H+G

Generate itd random vectors (V,,V5,), . . ., (V4_5 Vy_,) uniformly on C,.

RETURN (RV /S, RV /S, RV3\/S,, ..., RV, [54.., R*).
2

16. Let X be a random vector unlformly distributed on C;_;. Then the random

vector Y generated by the followlng procedure Is uniformly distributed on
Cd H

d-
Generate independent gamma ( !

/G
R G+H

RETURN Y —(RX ,£V1-R?) where =+ is a random sign.

) and gamma (—;—) random variates G ,H .

Show this. Notice that thls method allows one to generate Y Inductlvely by
starting with d =1 or d =2. For d =1, X s merely +1. For d =2, R 1s dis-

tributed as sln(-%q). For d =3, R s distributed as V1-U?2 where U is a

uniform [0,1] random varlable. To Implement thls procedure, a fast gamma
generator 1s required (Hicks and Wheellng, 1959; see also Rublnsteln, 1982).

In a slmulatlon It Is requlired at one polnt to obtaln a random vector (X,Y)
uniformly distributed over a star on R%. A star S, with parameter a >0 Is
defined by four curves, one In each quadrant and centered at the origin. For
example, the curve In the positive quadrant 1s a plece of a closed llne satlsfy-
Ing the equation “

|1-z |+ |1-y |® =1
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The three other curves are deflned by symmetry about all the axes and
1
about the origin. For @ =3 we obtaln the circle, for ¢ =1, we obtaln a dla-

mond, and for ¢ =2, we obtain the complement of the unlon of four eclirecles.
Glve an algorithm for generating a polnt unlformly distributed In S, , Where
the expected time Is uniformly bounded over a.

18. The Johnson-Ramberg method for normal random variates. Two
methods for generating normal random varlates In batches may be competi-

tive with the ordinary polar method because they avold square roots. Both
are based upon the Johnson-Ramberg technlque:

Generate X uniformly in C, by rejection from [-1,1]%.

Generate R, which is distributed as V2G where G is a gamma (-g—) random

2-_"_?.

variable. (Note that R has density —ré—e 2)

RETURN RX

Generate X uniformly in C, by rejection from [~1,1]3.
Generate R, where R is distributed as v2G andQG' is a gamma (2) random

r

3 ——
r 5
variable. (Note that R has densit r'{(—=)e 2.
( y (72) (2) )
RETURN RX

These methods can only be competitive If fast direct methods for generating
R are avallable. Develop such methods.

18. Extend the entire theory towards other norms, l.e. Cy 1s now defined as the
collection of all points for which the p -th norm Is less than or equal to one.
Here p >0 1s a parameter. Reprove all theorems. Note that the role of the
normal denslty is now Inherited by the density

f(z)=ce =",

where ¢ >0 Is a normallzation constant. Determline this constant. Show that

a random varlate with this density can be obtalned as X ? where X 1Is
gamma (i) distributed. Find a formula for the probability of acceptance
p
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when random varlates with a uniform distribution In C’d are obtalned by
reJectlon from [-1,1]%. (To check your result, the answer for d=2 Is

I‘2(—1—)F'1(3-) (Beyer, 1968, p. 630).) Discuss varlous methods for generating
p p

random vectors unlformly distributed on Cy, and deduce the marginal den-
slty of such random vectors .



