Chapter Fifteen
THE RANDOM BIT MODEL

1. THE RANDOM BIT MODEL.

1.1. Introduction.

Chapters I-XIV are based on the premlses that a perfect uniform [0,1] ran-
dom varlate generator Is avallable and that real numbers can be manipulated and
stored. Now we drop the first of these premises and Instead assume a perfect bit
generator (l.e., a source capable of generatlng 1id {0,1} random varlates
B ,,B,,...),while still assuming that real numbers can be manlpulated and stored,
as before: this 1s for example necessary when someone gives us the probabllitles
p, for discrete random varlate generation. The cost of an algorithm can be
measured In terms of the number of bits required to generate a random variate.
This model 1s due to Knuth and Yao (19768) who Introduced a complexity theory
for nonuniform random varlate generatlon. We will report the maln ldeas of
Knuth and Yao In this chapter.

If random bits are used to construct random varlates from scratch, then
there Is no hope of constructing random varlates with a denslty In a finlte
amount of time. If on the other hand we are to generate a discrete random varl-
ate, then 1t Is possible to find finlte-time algorithms. Thus, we will malnly be con-
cerned with discrete random varlate generation. For contlnuous random varlate
generation, 1t Is possible to study the relationshlp between the number of input
bits needed per n bits of output, and to develop a complex!ity theory based upon
this relatlonship. This will not be done here. See however Knuth and Yao (1978).
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1.2. Some examples.

Assume first that we wish to generate a blnomlal random varlate with
parameters n =1 and p%—;- Thls can be consldered as the slmulatlon of a
blased coin flip, or the simulatlon of the occurrence of an event having probabll-

1
1ty p. If p were > we could Just exIt with B,. When p has blnary expansion

p =0.ppaps’ -

1t suffices to generate random bits untll for the first time B; £p;, and to return 1
if B; <p; and O otherwise:

Binomial (1,p) generator

{0
REPEAT
fet+1
Generate a random bit B .
UNTIL B sp;
RETURN X «—Ip ,,

If we deflne the uniform [0,1] random varlate
U=o0B,B,B; -,

then 1t Is easy to see that thls simple algorithm returns
Iy <p -

Interestingly, the probabllity of exlting after ¢ blts s 2"', 50 that the expected
number of bits needed is preclsely 2, Independent of p. We recognize In thls
example the Inversion method.

The rejection method too has a nlce analog. Suppose that we want to gen-
erate a random Integer X where P (X =1 )=p; , 1<¢ <n, and that all probablll-

tles p; are multiples of _]%4—’ where 2¥1< M <2* for some Integer k. Then we can

conslder consecutlve k-tuples In the sequence BI,BQ,... and set up a table with
2f entries: M entrles are used for storing integers between 1 and M, and the
remalning entrles are 0. If p; =!; /M, then the integer ¢ should appear /; times In
the table. An Integer O Indicates a rejection. Now use
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Rejection algorithm

REPEAT

Generate k random bits, forming the number Z€{0,1, . . ., 2*-1}.
UNTIL Z <M
RETURN X +A (Z] (where A is the table of M integers)

In thls algorithm, the expected number of blts required Is k£ divided by the pro-
babllity of lmmedlate acceptance, l.e.

k
—— <2k =2 [1og2M] .
ok
In both examples provided here, we can consider the complete unbounded
binary tree in which we travel down by turning left when B; =0 and right when
B; =1. In the rejectlon method, we have deslgnated M nodes at the k-th level as
terminal nodes. The remalning nodes at the k-th level are "rejectlon nodes”, and
are In turn roots of simllar subtrees. Since these rejectlon nodes are ldentified
with the overall root, we can superimpose them on the root, and form a pseudo-

tree with some loopbacks from the k-th level to the root. But then, we have a
finite directed graph, or a finlte state machine.

In the Inverslon method, the expansion of p determines an unbounded path
down the tree, and so does the expanslon of U. Since we need only determine
whether one path Is to the left or the right of the other path, 1t suffices to travel

1
down until the paths separate. With probablilty -2—, they separate right away.
. 1
Otherwlse, they separate with probabllity -5 at the next level, and so forth.

‘What we will do In the sectlons that follow is

(1) Develop a lower bound for the expected number of bits In terms of
P1sPg . . ., the probabllity vector of the discrete random varlate.

(11) Develop black box methods and study thelr expected complexity.
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2. THE KNUTH-YAO LOWER BOUND.

2.1. DDG trees.

Suppose that we wish to generate a discrete random varlate X wlith proba-
blllty vector p,,p,,... . The probabliity vector can be finlte or Infinite dimen-
slonal. Every algorithm based upon random bits can be represented as a blnary
tree (which Is usually infinite), contalning nodes of two types:

(1) Branch nodes (or Internal nodes), having two chlldren. We can travel to the
left child when a O bit 1s encountered, and to the right child otherwise.

(11) Termlnal nodes without chlldren. These nodes are marked with an integer to
be returned.

It Is Instructive to verlfy that thls structure is present for the examples of the
previous sectlon. For example, for the binomlal (1,p ) generator, consider the path
for p, and assign term!nal nodes marked 1 to all left chlldren of nodes on the
path that do not belong to the path themselves, and terminal nodes marked 0 to
all right chlldren of nodes on the path that do not belong to the path themselves.

Let us Introduce the notatlon {; (k) for the number of terminal nodes on
level k£ (the root Is on level 0) which are marked :. Then we must have

ti2(kk) =p;, (alle).

k>0
When these conditlons are satlsfled, we say that we have a DDG-tree (dlscrete
distribution generating tree, termlinology Introduced by Knuth and Yao, 1978).
The corresponding algorithms are called DDG-tree algorithms. DDG-tree algo-

rithms halt with probabllity one because the sum of the probablilitles of reaching
the termlnal nodes Is

t; (k
k) _

i k>0 2k i

2.2. The lower bound.

Let us Introduce the functlon x{z ) = zmod 1 == z— |z ]|, the fractional part
of z . Deflne furthermore

u(x)——:z-&(y;—xl (0<z<1),
k>0 2

and the entropy function

H(z)= :z:logz-;l; (z >0).
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Theorem 2.1

Let N be the number of random bits taken by a DDG-tree algorithm.
Then:

A. E(N)Z $up) .

B. Let H(p.ps...) = Y)H(p;) be the entropy of the probabllity distributlon
i

(p 1.P 25-..). Then
H(p 12D 2,...) S ZV(p,-) .

C. Tupi) S H(pypoe)t+2.
s

Proof of Theorem 2.1.
‘We begin with an expression for E (N ):

E(N)= Y P(N>k)

k>0
b (k)

= E———-—
k>0 2k

where b (k) Is the number of internal (or: branch) nodes at level k. We obtaln
the lower bound by finding a lower bound for b (k). Let us use the notation ¢ (k)
for the number of terminal nodes at level k. Thus,

b(O)+t(0)=1,
bk)+t(k)=2b(k-1) (k=>1).
Using these relations, we can show that

bk)= xo L)

=k oi-k
(Note that this Is true for k =0, and use Induction from there on.) But
() t(5) o X7
Zw e TP

This is true because the left-hand-sum 1s nonnegative, and the right-hand-sum s
an Integer multiple of ok Comblning all of this ylelds

b(k) > Yx@F p;)

This proves part A. Part B follows If we can show the following:
Hz)< vz)< H(z)+2z (allz).
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Note that thls Is more than needed, but the second part of the Inequallty will be
useful elsewhere. For a number z €[0,1), we will use the notatlon z =0.2,Z, - -
for the blnary exparnsion. By definitlon of v(z ),

T;
=X ¥ =
j200<k <52

izo 2

Now, v(0)=H (0)==0. Also, If 2% <z <2!*,
Jz;
z)= % ——]l-
ik 2
logg(—l-)xj
A
2y —
ik 2
= H(z).

Also, because z;, ==1,

(log2(-gl-v-)+2— i)z

H(z)+2z-v(z)= 2 -
ik 2/
(k+1~7)z;

ik 27

I
o
.

The lower bound of Theorem 2.1 Is related to the entropy of the probabllity
vector. Let us briefly look at the entropy of some probabllity vectors: If

p,~=—1— y 1<1 <n, then
n

H(p,y, ..., p,)=1logyn .

In fact, because H Is Invarlant under permutatlons of 1ts arguments, and Is a
concave function, 1t Is true that for probablilty vectors
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(pll"')pﬂ)’(ql""an)’
Hpy, . - 0,) S H(gy, -, 4,)

when the p, vector ls stochastically smaller than the ¢, vector, l.e. If the p;’s
and ¢;’s are In Increasing order, then

P S qi;
P+, S gyt+q,s

Pitpot 4Py, S g1+qo+ - - +g, .

This follows from the theory of Schur-convexity (Marshall and Olkin, 1979); In
particular, for all probablllty vectors (p,, . . . , p, ), We conclude that

0 H(py, - - -, pp) S logen .

Both bounds are attainable. In a sense, entropy increases when the probabllity
vector becomes smoother, more uniform. It 1s smallest when there is no random-
ness, l.e. all the probabllity mass Is concentrated In one polnt. According to
Theorem 2.1, we are tempted to conclude that uniform random varlates are the
costliest to produce. This Is Indeed the case If we compare optimal algorithms for
distributions, and If the lower bounds can be attalned for all distributions (thls
wlll be dealt with In the next sub-section). If we conslder discrete distributions
with n Infinlte, then 1t is possible to have H (p,,p 5,...)=00. To construct coun-
terexamples very easlly, we note that If the p,'s are |, then

H(p,,...) > E (log(X))

where X Is a random varlate with the glven probabllity vector. To see this, note

that p, S_}z—' and thus that —p, log(p, ) = p,log(n ). Thus, whenever

c
nlogt*te(n)

~

as n —oo, for some €€(0,1], we have Infinite entropy. The constant ¢ may be
difficult to calculate except In speclal cases. The following example Is due to
Knuth and Yao (1976):

_ \lo&(n )} -2 ‘Llogz(loge(n )~)}—1 (n >2).

p,=0;p, =2
Note that this corresponds to the case e=1. Thus, we note that for any DDG-tree
algorithm, E (log(X ))==00 implies E (NN )==00, regardless of whether the probabll-
1ty vector Is monotone or not. The explanatlon Is very slmple: E (log,(X )) Is the
expected number of bits needed to store, or describe, X . If this 1s oo, there Is It~
tle hope of generating X requiring only E (/N )<oo provided that the dlstribution
of X 1s sufficlently spread out so that no bits are "redundant” (see exerclses).
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2.3. Exercises.

1. The entropy. This Is about the entropy H of a probabllity vector
(p 1»P 2»-..). Show the followlng:

A. There exlsts a probablllty vector such that F (logy(X ))=09, yet
E(N)<oo. Here X 1Is a discrete random varlate with the glven proba-
blllty vector. Hint: clearly, the counterexample 1s not monotone.

B. Is It true that when the probabllity vector Is monotone, then
E (logy(X ))< oo Implles H(p ,...) <00 ?

C. Show that the p, 's deflned by

im0 — o \.logz(n)-‘—Q Hlogz(logz(n))]—l (n>2)

form a probabllity vector, and that its entropy Is co.

D. Show that if one finlte probabllity vector Is stochastically larger than
another probablllty vector, then Its entropy !s at most equal to the
entropy of the second probabllity vector.

E. Prove that when z €[0,1] Is a power of 2, we have v(z)=H (z), and
that for any z €[0,1], 1z )=2" u(—ﬁ-—)—na: .
2

3. OPTIMAL AND SUBOPTIMAL DDG-TREE ALGORITHMS.

3.1. Suboptimal DDG-tree algorithms.

We know now what we can expect at best from any DDG-tree algorithm In
terms of the expected number of random bits. It Is another matter altogether to
construct feaslble DDG-tree algorithms. Some algorithms requlre unwieldy set-up
times and/or calculations which would overshadow the contributlon to the total
complexity from the random blt generator. In fact, most practical DDG-tree algo-
rithms correspond to algorithms described In chapter III. Let us qulckly check
what Kind of DDG-tree algorithms are hidden in that chapter.

In sectlon IIL.2, we Introduced Inversion of a unlform [0,1] random varlate
U. In sequentlal Inversion, we compared U with successlve partial sums of P, ’s.
This corresponds to the following Inflnite DD G-tree: conslder all the paths for the
partlal sums, l.e. the path for p,, for p,+p,, etcetera. In case of a finlte vector,
we deflne the last cumulatlve sum by the blnary expansion 0.111111111.... Then
generate random blts until the path traveled by the random bits deviates for the
first time from any of the p, paths, If that path in questlon Is for p,, then
return n If the last random blt was O (the corresponding bit on the path Is 1),
and return n +1 otherwise. This method has two problems: first, the set-up Is
Impossible except In the followlng speclal case: all p,’s have a finite binary
expanslon, and the probablllty vector is finite. In all other cases, the DDG-tree
must be constructed as we go along.
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The analysls for this DDG-tree algorithm s not very difficult. Construct
(Just for the analysls) the trle In which terminal nodes are put at the polnts

where the paths for the p,'s diverge for the first time. For example, for the pro-
bablllty vector

p, = 0.00101
po = 0.001001
ps = 0.101101

we have the cumulative probabllities 0.00101,0.010011,0.1111111111.... Thus, we
can put terminal nodes at the positions 00, 01, and 1. It is easy to see that once
the termlnal nodes are reached, then on the average 2 more random blts are

needed. Thus, E (N)=2+ expected depth of the terminal nodes In the trie

defined above. In our example, this would yleld E(N)=2+—;—1+-—;—2=—;—. In

another example, If all the p, 's are equal to ok 1<n Szk , for some Integer k,
then E (N )=2+k, which grows as log,n . In general, we have

{=1 t

E(N) < 2+§Pi lrlogz('pl_')] S3+H(py, - .-, P,) -

This follows from a slmple argument. Consider the uniform [0,1] random varlate
U formed by the random bits of the random bit generator. Also mark the partial
sums of p;’s on [0,1], so that [0,1] Is partitioned Into n Intervals. The expected
depth of a terminal node in the trie is

1

[D(z) dx
T

where D (z ) 1s the smallest nonnegatlive Integer k¥ such that the 2k dyadic partl-
tlon of [0,1] Is such that only one of the partlal sums (O Is also consldered as a
partlal sum) falls In the same Interval. The ¢-th partlal sum ”controls” an Inter-

val in which D (z)< logz(i) , and the slze of the interval ltself 1s a power of
p.

2. Thus,

1 n
[D(z)dz < 3 p, [logz(pi)] ,
0 ) '

1t =1 i

from which we derlve the result shown above. We conclude that sequentlal search
type DDG-tree algorithms are nearly optimal for all probability vectors (compare
with Theorem 2.1).

The method of gulde tables, and the Huffman-tree based methods are simil-
lar, with the sole exception that the probabllity vector is permuted in the
Huffman tree case. All these methods can be translated Into a DDG-tree algo-
rithm of the type described for the sequentlial search method, and the perfor-
mance bounds glven above remaln valld. In view of the lower bound of Knuth
and Yao, we don't galn by using speclal truncatlon-based tricks, because trunca-
tlon corresponds to search Into a trie formed with equally-spaced polnts, and
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takes time proportlonal to log, of the number of ntervals,

Thus, 1t comes as no surprise that the allas method (sectlon III.4) has an
unlmpressive DDG-tree analog. We can conslder the following DDG-tree algo-
rithm: first, generate a unlform {1, . . ., 7 } -valued random Integer (this requires
on the average >log,n and <1+log,n random blts, as we remarked above).
Then, having plcked a slab, we need to make one more comparison between a
uniform random varlate and a threshold, which takes on the average 2 comparis-
ons by the binomlal (1,p ) algorithm described In sectlon XV.1. Thus,

2+logon < E(N) < 3+log,n .

Thls performance grows with n, while for the optimal DDG-tree algorithms we
will see that there are sequences of probabllity vectors for which £ (/NV) remaln
bounded as n —oo. In many cases, the allas algorithm does not even come close
to the lower bound of Theorem 2.1.

The rejectlon method corresponds to the following DDG-tree: construct a
DDG-tree in the obvious fashlon with two types of terminal nodes, terminal
nodes corresponding to a successful return (acceptance), and rejectlon nodes.
Make the rejectlon nodes roots of Isomorphic trees agaln, and continue at
lnfinitum.

3.2. Optimal DDG-tree algorithms.

The notation of section XV.2 1s Inherited. We start with the following
Theorem, due to Knuth and Yao (1978). It states that optimal algorithms achlev-
ing the lower bound do Indeed exlst.
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Theorem 3.1.
Let (p,Pg, - .., Py) be a discrete probabillty vector (where n may be
n
infinite). Assume first that S Y(p; )<oo. Then there exlsts a DDG-tree algorithm

V=1

for whlch

n
E(N)y= 3 v(p;).
=1
In fact, the following statements are equivalent for any DDG-tree algorlthm:

(1) P (N >k) I1s minimlzed for all £ >0 over all DDG-tree algorithms for the
glven distribution.
(1) For all k£ 20 and all 1<7 <n, there are exactly p,, termlnal nodes marked

i on level k where p; denotes the coefficlent of 27% In the blnary expanslon
of p;.

) E(N)= 3 up;).

=1

. ;
Assume next that 37 v(p; )==co. Then, statements (1) and (11) are equivalent.
§=1

Proof of Theorem 3.1.

We Inherlt the notation of the proof of Theorem 2.1. By Inspecting that
proof, we note that a DDG-tree algorithm attalns the lower bound (If 1t 1s finite)
If and only If for all 7+ and &k, we have equallty In

t: (1) e % t:(7) > x(2’.p,-) .

i>k 27 o<i<k 20 T 27

This means that

k .

Y52 = IL2" p;j :
j=0

But this says simply that #; (k) 1s p;; for all k. The number of terminal nodes at
level k for integer 7 1s O or 1 depending upon the value of the k-th bit in the
binary expansion of p;. To prove that such DDG-trees actually exist, define ¢; (k)
and t (k) by

ti(k)::pik
t(k)=py(k)+ - +p, (k).

Thus, we certalnly have

St k) =p
k>0
weoktk)y=1.

k>0
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A DDG-tree with these conditlons exists If and only If the Integers b (k) defined
by

b )+t =1,
b(k)+t (k) =2b(k-1) (k>1)

are nonnegative. But the b (£ )'s thus defined have a solution

bik)= » L)

i>k2’

Hence b(k)>0, and such trees exist. This proves all the statements !nvolving
(111). For the equlvalence of (1) and (i1) In all cases, we note that In Theorem 2.1,
we have obtalned a lower bound for b (k) for all k¥, and that the construction of
the present theorem glves us a tree for which the lower bound s attalned for all

k. But P(N >k )=28)
2

, and we are done. [Jj

Let us give an example of the optimal construction.

Example 3.1. (Knuth and Yao, 1978)
Conslder the transcendental probabllities

p, =+ =0.010100010111110...
m
1
Pa=— ==0.010111100010110...
pPs=1-p,—p, =0.010100000101010...

The optlmal tree Is Inherently infinite and cannot be obtained by a finlte state
machine (thls is possible If and only If all probabllities are ratlonal). The optimal
tree has at each level between O and 3 terminal nodes, and can be constructed
without too much trouble. Baslcally, all Internal nodes have two children, and at
each level, we put the terminal nodes to the right on that level. This usually
gives an asymmetric left-heavy tree. Using the notatlon I for Internal node, and
1,2,3 for terminal nodes for the Integers 1,2,3 respectively, we can specify the
optimal DDG-tree by speclfylng the nature of all the nodes on each level, from
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left to right. In the present example, this gives

Level Nodes
0 I

1 1 1

2 I 1 2 3
3 I I

4 I 1 2 3
5 1 2

6 I 2

7 I 2

8 I 1

9 I I

10 I I 1 3
11 I I 1 2
12 I 1 1 3
13 I 1 1 2
14 1 1 2 3
15 I 1

3.3. Distribution-free inequalities for the performance of optimal
DDG-tree algorithms.

We have seen that an optimal DDG-tree algorithm requlres on the average

EWN)= 3 up;)

f=1

random bivs. By an inequallty shown In Theorem 2.1,

H(z)<v(iz)<H(z)+2z ,x €[0,1], we see that for optimal algorithms,
n
ZH(pz)=H(pll .. ';pn)
=1

Thus, the performance s roughly speaking proportional to the entropy of the dis-
tribution. In general, this quantity Is not known beforehand. Often one wants a
prior! guarantees about the performance of the algorithm. Thus, distributlon-free
bounds on E (N) for the optimal algorithm can be very useful. We offer:
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Theorem 3.2. (Knuth and Yao, 1976)
Let p,, ..., p, be a finlte probablilty vector. Then,

22" < B ulpy) < {loggm)]+<n—1>2“[’°w)].

V=1

Proof of Theorem 3.2.
By deflnitlon of x and v,

X2 p )+ +x(@F py) < min(2¥ ,n-1)

for all £ >0. The n-1 upper bound follows by notlng that the left hand side Is
less than n, and that 1t 1s Integer valued because it can be written as

ot fta |

n n
Y upi)= 3 n2Fx@kp)
=1 k >01i=1
< 3 2*min(2*,n-1)
k>0

Thus,

n -1
k

= E 14
o<k £ lLloge(n —1)} k> ilogg(n-l)J
n-1

— 14| - —n-t
=1+ Llogz(n 1)} + {logg(n—l)J
2

The upper bound follows when we note that lLlogz(n -—1)} = l-log2(n )1—1. Let us

now turn to the lower bound. Using the notatlon of the proof of Theorem 2.1, an
optimal DDG-tree always has

n kt (k
5 up) = 3 2%
i =1 E>1 2
k(2b (k-1)-b(k))
k>1 ok
b (k)
=0 p
k>0 2
Since Y b(k)>n-1 (there are >n terminal nodes, and thus >n -1 Internal
k>0
nodes), and slnce conditional on the latter sum belng equal to s, the minimum of
3 b(f) Is reached for b (0)== - - + =b (s -1)==1, we see that
k>0 2

n
S up) > 2-270 > 2-20"

{=1
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3.4. Exercises.

1. The bounds of Theorem 3.2 are best possible. By inspection of the proof,
construct for each n a probablllty vector p,, ..., p, for which the lower
bound 1Is attalned. (Conclude that for thls famlly of distributions, the
expected performance of optimal DDG-tree algorithms 1s uniformly bounded
In n.) Show that the upper bound of the theorem Is attalned for

e, 2h -2t .
2 ‘1(3—;———3—)+2‘q 1<i <29 +1-n ,
2" 1
pi = n_ot=1_
o0 (22 Ly siiin<i<n,

2™ 1

where ¢ = [logz(n )] (Knuth and Yao, 1976).

2. Descrlbe an optimal DDG-tree algorithm of the shape described In Example
3.1, which requires storage of the probabllity vector only. In other words, the
tree Is constructed dynamlcally. You can assume of course that the p,'s can
be manipulated in your computer.

3. Finite state machines. Show that there exists a flnlte state machlne
(edges correspond to random bits, nodes to Internal nodes or terminal nodes)
for generating a dlscrete random varlate X taking values in {1, C e, n} if
and only If all probabllities involved are ratlonal. Give a general procedure
for constructing such finite state machines from (not necessarlly optimal)
DDG-trees by introducing rejection nodes and feedbacks to Ilnternal nodes.
For simulating one dle, find a finlte state machine requiring on the average

% random bits. Is this optimal ? For simulating the sum of two dice, find a

79
finlte state machine which requlres on the average —1? random blts. For

simulating two dice (NOT the sum), find a finlte state machine which

0
requlires on the average —zé—— random blts. Show that all of these numbers are

optimal. Note that In the last case, we do better than just simulating one dle

twlce with the first algorlthm since this would have eaten up -233 random

bits on the average (Knuth and Yao, 1976).

4. Conslder the following 5-state automaton: there 1s a START state, two ter-
mlnal states, A and B, and two other states, S1 and S2. Transltlons between
states occur when blts are observed. In particular, we have:

START 4 0 — S1
START 4+ 1 — S2
S1+0— A
S1 +1— 82
S2+0—B
S2 + 1 — START
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If we start at START, and observe a perfect sequence of random bits, then
what 1s P (A ),P(B) ? Compute the expected number of bits before halting.
Finally, construct the optimal DDG-tree algorithm for thils problem and find
a finlte-state equlvalent form requiring the same expected number of bits.
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