Weighted Nonlinear Least Squares Fitting
a.k.a. χ^2 Fitting
a.k.a. Maximum Likelihood Estimation of Parameters (MLE)
a.k.a. Bayesian parameter estimation
 (with uniform prior and maybe some other normality assumptions)

these are not all exactly identical, but they’re real close!

$$y_i = y(x_i | b) + \epsilon_i$$
measured values supposed to be a model, plus an error term

$$\epsilon_i \sim \mathcal{N}(0, \sigma_i)$$
the errors are Normal, either independently…

$$e \sim \mathcal{N}(0, \Sigma)$$
… or else with errors correlated in some known way (multivariate Normal)

We want to find the parameters of the model b from the data.
Do the Bayes thing!

\[
P(b | \{ y_i \}) \propto P(\{ y_i \} | b) P(b)
\]
\[
\propto \prod_i \exp \left[-\frac{1}{2} \left(\frac{y_i - y(x_i | b)}{\sigma_i} \right)^2 \right] P(b)
\]
\[
\propto \exp \left[-\frac{1}{2} \sum_i \left(\frac{y_i - y(x_i | b)}{\sigma_i} \right)^2 \right] P(b)
\]
\[
\propto \exp \left[-\frac{1}{2} \chi^2 \right] P(b)
\]

Or, for the correlated errors case,

\[
\chi^2 = [y_{\{i\}} - y(x_{\{i\}} | b)]^T \Sigma^{-1} [y_{\{i\}} - y(x_{\{i\}} | b)]
\]

Now the idea is: Find (somehow!!) the parameter value \(b_0\) that minimizes \(\chi^2\).

That is the MLE. (Note that it is implicitly Bayes with uniform prior.)
By the way, minimum finding in general is as hard as any computationally hard problem!

For example factoring integers:

\[C = ab \]

\[(a, b) = \min_{a,b} \left[(C - ab)^2 + \sin^2(\pi a) + \sin^2(\pi b)\right] \]

has a single global minimum of 0 if \(C \) is product of two primes, multiple minima of 0 if \(C \) is product of more than two primes, global minimum \(> 0 \) if \(C \) is prime

So, in real life, global minimum finding is only as good as your ability to guess a starting value in the “basin of convergence” of the minimum. Different numerical methods have better or worse basins of convergence.
How accurately are the fitted parameters determined?
As Bayesians, we would instead say, what is their posterior distribution?

Taylor series:

\[-\frac{1}{2}\chi^2(b) \approx -\frac{1}{2}\chi^2_{\text{min}} - \frac{1}{2}(b - b_0)^T \left[\frac{1}{2} \frac{\partial^2 \chi^2}{\partial b \partial b} \right] (b - b_0)\]

So, while exploring the χ^2 surface to find its minimum, we must also calculate the Hessian (2nd derivative) matrix at the minimum.

Then

\[P(b|\{y_i\}) \propto \exp \left[-\frac{1}{2}(b - b_0)^T \Sigma_b^{-1}(b - b_0) \right] P(b)\]

with

\[\Sigma_b = \left[\frac{1}{2} \frac{\partial^2 \chi^2}{\partial b \partial b} \right]^{-1}\]

Don’t confuse the “covariance matrix of the data errors” with the “covariance matrix of the fitted parameters”. For example, the data errors are often diagonal (uncorrelated), while the parameters covariance is essentially never diagonal!

Also note that the Normality of the parameters is only a Taylor series approximation. It becomes accurate as the amount of data gets large, but can otherwise be way wrong!
Frequentists love MLE estimates (and not just the case with a Normal error model) because they have provably nice properties asymptotically

- Consistency: converges to true value of the parameters
- Equivariance: estimate of function of parameter = function of estimate of parameter
- asymptotically Normal
- asymptotically efficient (optimal): among estimators with the above properties, it has the smallest variance

The “Fisher Information Matrix” is another name for the Hessian of the log probability (or, rather, log likelihood):

\[I(b) = -\left\langle \frac{\partial^2 \log P(y_i | b)}{\partial b \partial b} \right\rangle \approx 2\Sigma_b^{-1} \]

Bayesians tolerate MLE estimates because they are almost Bayesian – even better if you put the prior back into the minimization.

But Bayesians keep in mind that we live in a non-asymptotic world!
Let’s fit a model to the exon-length data.

The “classic” approach: bin the data, do weighted nonlinear least squares fit (This then applies to x,y data points in general, not just counts, the example here.)

binning:

```matlab
exloglen = log10(cell2mat(g.exonlen));
[count cbin] = hist(exloglen,(1:.1:4));
count = count(2:end-1); % trim ends, which have overflow counts
cbin = cbin(2:end-1);
ecount = sqrt(count+1);
bar(cbin,count,'y')
hold on;
```

Inexplicably, Matlab lacks a weighted nonlinear fit function, so we have to make one out of their unweighted function nlinfit (they have a help page telling how to do this):

```matlab
function [beta r J Covar mse] = nlinfitw(x,y,sig,model,guess)
yw = y./sig;
modelw = @(b,x) model(b,x) ./ sig;
[beta r J Covar mse] = nlinfit(x,yw,modelw,guess);
Covar = Covar ./ mse; % undo Matlab’s well-intentioned scaling
```

for general x,y data, this would be the standard deviation or “error bar”

more on this later!
Fit a single Gaussian (of course, it's in log space)

model oneg = @(b,x) b(1).*exp(- 0.5 .*((x-b(2))/b(3)).^2);
guess = [3.5e4 2.1 .3];
[bfit rJ Covar mse] = nlinfitw(cbin, count, ecount, model oneg, guess);
bfit, Covar, mse
stderr = sqrt(diag(Covar))
plot(cbin, modeloneg(bfit, cbin), 'b')
bfit =
 29219 2.0966 0.23196
Covar =
 8513 -0.0012396 -0.02769
-0.0012396 3.1723e-007 9.833e-009
-0.02769 9.833e-009 2.1986e-007
mse =
 849.37
stderr =
 92.266
0.00056323
0.0004689

mse \approx \frac{\text{pts} - \text{params}}{\text{pts}}

"mean square error" relative to our scaled errors, so it should be < 1 for a good fit.
Fit sum of two Gaussians:

This time, we'll put the model function into an external file:

```matlab
function y = modeltwog(b, x)
    y = b(1).*exp(-0.5.*((x-b(2))./b(3)).^2) + ... 
        b(4).*exp(-0.5.*((x-b(5))./b(6)).^2);
```

```matlab
guess2 = [guess 3000 3.0 5];
[bfit2 r2 J2 Covar2 mse2] = nlinfit(cbi, count, ecount, @modeltwog, guess2);
bfit2, sqrt(diag(Covar2)), mse2
plot(cbi, modeltwog(bfit2, cbi), 'r')hold off
```

Although it seems to capture the data qualitatively, this is still a bad fit. Whether this should worry you or not depends completely on whether you believe the model should be “exact”
We keep getting these big mse’s!
Let’s demonstrate that mse \sim 1 is what you should get for a perfect model:

```matlab
perfect = 2.0 .* randn(10000,1) + 4.;
[count cbin] = hist(perfect,(-1:.2:9));
count = count(2:end-1);
cbin = cbin(2:end-1);
cecount = sqrt(count+1);
[bfit r ] Sigma mse] = nlinfitw( cbin, count, ecount, model oneg, guess);
```

\[
\begin{align*}
\text{bfit} &=
\begin{pmatrix}
393.27 \\
4.0159 \\
2.0201
\end{pmatrix} \\
\text{Sigma} &=
\begin{pmatrix}
25.784 & -0.0005501 & -0.057248 \\
-0.0005501 & 0.00046937 & 3.5555e-006 \\
-0.057248 & 3.5555e-006 & 0.00032997
\end{pmatrix} \\
\text{mse} &=
\begin{pmatrix}
0.95507
\end{pmatrix}
\end{align*}
\]

\[
\text{chisq} = \text{numel(count)}*\text{mse} \\
\text{df} = \text{numel(count)}-3;
\]

\[
\text{pval ue} = \text{chi2cdf} (\text{chisq}, \text{df})
\]

\[
\text{chisq} =
\begin{pmatrix}
46.799
\end{pmatrix} \\
\text{pval ue} =
\begin{pmatrix}
0.56051
\end{pmatrix}
\]

Let’s see if 0.955 is actually good enough:

by definition, mse times number of bins equals chi-square

three fitted parameters

yep, good enough!

Summary of “classic” n.l.s fits:

A complete job consists of finding model parameters, their errors (or covariance matrix), and a goodness-of-fit p-value.

If you expect the model to be exact, then take the p-value seriously.
What is the uncertainty in quantities other than the fitted coefficients:

For example, what if we want the ratio of areas in the two Gaussians?

Method 1: Linearized propagation of errors

\[f \equiv f(b) = f(b_0) + f' \cdot b_1 \]

\[\langle f \rangle = \langle f(b_0) \rangle + f' \cdot \langle b_1 \rangle = f(b_0) \]

\[\langle f^2 \rangle - \langle f \rangle^2 = 2f(b_0)(f' \cdot \langle b_1 \rangle) + \langle (f' \cdot b_1)^2 \rangle \]

\[= f' \cdot \langle b_1 \otimes b_1 \rangle \cdot f' \]

\[= f' \cdot \Sigma \cdot f' \]

Recall the meaning of the b's:

```
syms b1 b2 b3 b4 b5 b6 real
func = (b1*b3)/(b4*b6);
b = [b1 b2 b3 b4 b5 b6];
symgrad = jacobian(func, b)'
symgrad =
  b3/b4/b6
  b1/b4/b6
- b1*b3/b4^2/b6
  0
- b1*b3/b4/b6^2
grad = double(subs(symgrad,b,bfit2))
gradi =
  0.00020537
  0
  29.732
-0.0023024
  0
-16.685
mu = double(subs(func,b,bfit2))
sigma = sqrt(grad' * Covar2 * grad)
mu =
  6.2911
sigma =
  0.096158
```

Do whole thing in Matlab, including the symbolic derivatives:
Mathematica a bit cleaner (although knowing about ToRules is a gotcha!)

\[b = \{b_1, b_2, b_3, b_4, b_5, b_6\}; \]

\[\text{func} = \frac{(b_1 \times b_3)}{(b_4 \times b_6)} \]

\[
\begin{align*}
 &b_1 b_3 \\
 &b_4 b_6
\end{align*}
\]

\[\text{symgrad} = D[\text{func}, \{b\}] \]

\[
\left\{ \frac{b_3}{b_4 b_6}, 0, \frac{b_1}{b_4 b_6}, -\frac{b_1 b_3}{b_4^2 b_6}, 0, -\frac{b_1 b_3}{b_4 b_6^2} \right\}
\]

\[\text{bfit2} = \{30.633, 2.0823, 0.21159, 2732.5, 2.8998, 0.37706\}; \]

\[\text{grad} = \text{symgrad} / . \text{ToRules}[b \Rightarrow \text{bfit2}] \]

\[\{0.000205364, 0, 29.7316, -0.00230226, 0, -16.6841\} \]
Method 2: Sample from the posterior distribution

Actually, this is not quite really sampling from the posterior, because we are taking the b’s to be multivariate normal, which is true only asymptotically for large data. Later, we’ll learn how to sample the true (non-asymptotic) distribution, valid for any data size.
It’s important that we use the full covariance matrix, not just its diagonal (the individual parameter variances):

\[
\text{wrongcov} = \text{diag} (\text{diag}(\text{Covar2}))
\]

\[
\text{wrongcov} =
\begin{pmatrix}
9921.9 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.7694e-007 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3.1555e-007 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 560.14 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.8203e-005 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1.7537e-005 \\
\end{pmatrix}
\]

\[
\text{sigma} = \sqrt{\text{grad'} \ast \text{wrongcov} \ast \text{grad}}
\]

\[
\text{sigma} = \sqrt{\text{grad'} \ast \text{Covar2} \ast \text{grad}}
\]

\[
\text{sigma} =
\begin{pmatrix}
0.092457 \\
0.092457 \\
0.096158 \\
\end{pmatrix}
\]

Well, here, there’s not much difference. But if some of the b’s were highly correlated in the fit, there could be a huge difference. The correct error estimate can be larger or smaller than the wrong one using only the diagonal (pos or neg correlations).

Example:

- x and y have comparable (large) variances
- x+y also has large variance
- but x-y has a much smaller variance
Compare linear propagation of errors to sampling the posterior

- Note that even with lots of data, so that the distribution of the b’s really multivariate normal, a derived quantity might be very non-Normal.
 - In this case, sampling the posterior is a good idea!
- For example, the ratio of two normals of zero mean is Cauchy
 - which is very non-Normal!
- So, sampling the posterior is a more powerful method than linear propagation of errors.
 - even when optimistically (or in ignorance) assuming multivariate Gaussian for the fitted parameters
Crito (foil to Socrates who is always doubting) says:

“I don’t believe this at all! There are so many places that you could have slipped something over on us!

For example, the fit was never actually good, so how do I know I don’t have to scale the final uncertainty in the ratio of errors accordingly? (I’ve heard of people doing this!)

And, related, how do I know that your mysterious ‘correction’ of Matlab’s Covar was right? Aren’t the MathWorks people a lot smarter than you are?

This whole course is just BS! And you better give me an A.”

Well, Crito has a point: You should always be thinking about how to check that the formalism that you are using is giving a sensible answer. Thus may you hope to avoid embarrassing errors in your published papers!

Now is the time to learn about bootstrap resampling!
Bootstrap resampling (very important!)

- We applied some end-to-end process to a data set and got a number out
 - the ratio of areas
- The data set was drawn from a population
 - which we don’t get to see, unfortunately
 - we see only a sample of the population
- We’d like to draw new data sets from the population, reapply the process, and see the distribution of answers
 - this would tell us how accurate the original answer was, at least as regards sample size
 - but we can’t: we don’t have access to the population
- However, the data set itself is an estimate of the population pdf!
 - in fact, it’s the only estimate we’ve got!
- We draw – with replacement – from the data set and carry out the proposed program
 - Bootstrap theorem [glossing over technical assumptions]: The distribution of any resampled quantity around its full-data-set value estimates the distribution of the data set value around the population value.
Easily done in Matlab:

```matlab
function mu = areasboot(data)
samp = randsample(data,numel(data),true);
[count cbin] = hist(samp,(1:.1:4));
count = count(2:end-1);
cbin = cbin(2:end-1);
ecount = sqrt(count+1);
guess = [3.5e4 2.1 3. 3000 3. 0.5];
[bfit r J Covar mse] = nlinfitw(cbin, count, ecount, @modeltwog, guess);
mu = (bfit(1)*bfit(3))/(bfit(4)*bfit(6));
```

```matlab
eas = arrayfun(@(x) areasboot(exloglen), (1:1000));
mean(as)
std(as)
ans =
6.2974
ans =
0.095206
hist(as, [5.9:0.025:6.7]);
```

recall, sampling from the posterior gave:

takes about 1 min on my machine
Sampling the posterior “honors” the stated measurement errors. Bootstrap doesn’t. That can be good.

Suppose (toy example) the “statistic” is

\[s = x_1 + x_2 \]

then the posterior probability is

\[P(s) \propto \exp \left[-\frac{1}{2} \frac{(s - x_1 - x_2)^2}{\sigma_1^2 + \sigma_2^2} \right] \]

Note that this depends on the \(\sigma \)'s!

The bootstrap (here noticeably discrete) doesn’t depend on the \(\sigma \)'s. In some sense it estimates them, too.

So, if the errors were badly underestimated, sampling the posterior would give too small an uncertainty, while bootstrap would still give a valid estimate.

If the errors are right, both estimates are valid. Notice that the model need not be correct. Both procedures give valid estimates of the statistical uncertainty of parameters of even a wrong (badly fitting) model. But for a wrong model, your interpretation of the parameters may be misleading!
Compare and contrast bootstrap resampling and sampling from the posterior
Both have same goal: Estimate the accuracy of fitted parameters.

• **Bootstrap** is frequentist in outlook
 – draw from “the population”
 – even if we have only an estimate of it (the data set)
• Easy to code but computationally intensive
 – great for getting your bearings
 – must repeat your basic fitting calculation over all the data 100 or 1000 times
• Applies to both model fitting and descriptive statistics
• Fails completely for some statistics
 – e.g. (extreme example) “harmonic mean of distance between consecutive points”
 – how can you be sure that your statistic is OK (without proving theorems)?
• Doesn’t generalize much
 – take it or leave it!

• **Sampling from the posterior** is Bayesian in outlook
 – there is only one data set and it is never varied
 – what varies from sample to sample is the goodness of fit
 – we don’t just sit on the (frequentist’s) ML estimate, we explore around
• In general harder to implement
 – we haven’t learned how yet, except in the simple case of an assumed multivariate normal posterior
 – will come back to this when we do Markov Chain Monte Carlo (MCMC)
 – may or may not be computationally intensive (depending on whether there are shortcuts possible in computing the posterior)
• Rich set of variations and generalizations are possible

(patients not polyps)