
NUMERICAL RECIPES
Webnote No. 11, Rev. 1

Code Listing for selip

Two minor additional tricks in the following routine, selip, are (i) augmenting
the set of M random values by an M C 1st, the arithmetic mean, and (ii) choosing
theM random values “on the fly” in a pass through the data, by a method that makes
later values no less likely to be chosen than earlier ones. (The underlying idea is to
give element m > M an M=m chance of being brought into the set. You can prove
by induction that this yields the desired result.)

Doub selip(const Int k, VecDoub_I &arr) { selip.h
Given k in [0..n-1] returns an array value from arr[0..n-1] such that k array values are less
than or equal to the one returned. The input array is not altered.

const Int M=64;
const Doub BIG=.99e99;
Int i,j,jl,jm,ju,kk,mm,nlo,nxtmm,n=arr.size();
Doub ahi,alo,sum;
VecInt isel(M+2);
VecDoub sel(M+2);
if (k < 0 || k > n-1) throw("bad input to selip");
kk=k;
ahi=BIG;
alo = -BIG;
for (;;) { Main iteration loop, until desired ele-

ment is isolated.mm=nlo=0;
sum=0.0;
nxtmm=M+1;
for (i=0;i<n;i++) { Make a pass through the whole array.

if (arr[i] >= alo && arr[i] <= ahi) {
Consider only elements in the current brackets.
mm++;
if (arr[i] == alo) nlo++; In case of ties for low bracket.
Now use statistical procedure for selecting m in-range elements with equal
probability, even without knowing in advance how many there are!
if (mm <= M) sel[mm-1]=arr[i];
else if (mm == nxtmm) {

nxtmm=mm+mm/M;
sel[(i+2+mm+kk) % M]=arr[i]; The % operation provides a some-

what random number.}
sum += arr[i];

}
}
if (kk < nlo) { Desired element is tied for lower bound;

return it.return alo;
}
else if (mm < M+1) { All in-range elements were kept. So re-

turn answer by direct method.shell(sel,mm);
ahi = sel[kk];
return ahi;

}

1
Copyright 2007 Numerical Recipes Software

2 Code Listing for selip

sel[M]=sum/mm; Augment selected set by mean value (fixes
degeneracies), and sort it.shell(sel,M+1);

sel[M+1]=ahi;
for (j=0;j<M+2;j++) isel[j]=0; Zero the count array.
for (i=0;i<n;i++) { Make another pass through the array.

if (arr[i] >= alo && arr[i] <= ahi) { For each in-range element..
jl=0;
ju=M+2;
while (ju-jl > 1) { ...find its position in the selected set by

bisection...jm=(ju+jl)/2;
if (arr[i] >= sel[jm-1]) jl=jm;
else ju=jm;

}
isel[ju-1]++; ...and increment the counter.

}
}
j=0; Now we can narrow the bounds to just

one bin, that is, by a factor of order
m.

while (kk >= isel[j]) {
alo=sel[j];
kk -= isel[j++];

}
ahi=sel[j];

}
}

Approximate timings: selip is about 10 times slower than select. Indeed, for
N in the range of � 105, selip is about 1.5 times slower than a full sort with sort,
while select is about 6 times faster than sort. You should weigh time against
memory and convenience carefully.

Copyright 2007 Numerical Recipes Software

